

The pesticide chlorpyrifos increases the risk of Parkinson's disease

Received: 14 May 2025

Accepted: 29 November 2025

Published online: 11 December 2025

Cite this article as: Hasan K.M.M., Barnhill L.M., Paul K.C. *et al.* The pesticide chlorpyrifos increases the risk of Parkinson's disease. *Mol Neurodegeneration* (2025). <https://doi.org/10.1186/s13024-025-00915-z>

Kazi Md. Mahmudul Hasan, Lisa M. Barnhill, Kimberly C. Paul, Chao Peng, William Zeiger, Beate Ritz, Marisol Arellano, Michael Ajnassian, Shujing Zhang, Aye Theint Theint, Gazmend Elezi, Hilli Weinberger, Julian P. Whitelegge, Qing Bai, Sharon Li, Edward A. Burton & Jeff M. Bronstein

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **The Pesticide Chlorpyrifos Increases the Risk of Parkinson's
2 Disease**

3
4 Kazi Md Mahmudul Hasan¹, Lisa M Barnhill¹, Kimberly C Paul¹, Chao Peng¹,
5 William Zeiger¹, Beate Ritz^{2,3}, Marisol Arellano^{1,3}, Michael Ajnassian¹,
6 Shujing Zhang¹, Aye Theint Theint¹, Gazmend Elezi⁴, Hilli Weinberger⁴,
7 Julian P Whitelegge⁴, Qing Bai⁵, Sharon Li¹, Edward A Burton^{5,6}, & *Jeff M
8 Bronstein^{1,3}

9
10 ¹Department of Neurology, David Geffen School of Medicine at UCLA, 710
11 Westwood Plaza, Los Angeles, CA 90095, USA

12 ²Department of Epidemiology, University of California-Los Angeles, Los
13 Angeles, CA 90095, USA

14 ³Environmental and Molecular Toxicology Interdepartmental Program,
15 University of California Los Angeles, Los Angeles, CA 90095, USA

16 ⁴Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute
17 for Neuroscience and Human Behavior, David Geffen School of Medicine at
18 UCLA, Los Angeles, CA 90095, USA

19 ⁵Department of Neurology and Pittsburgh Institute for Neurodegenerative
20 Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-
21 3301, USA

22 ⁶Geriatric Research, Education, and Clinical Center, Pittsburgh VA
23 Healthcare System, Pittsburgh, PA 15240

* Correspondence to:

Jeff M. Bronstein MD, PhD
David Geffen School of Medicine
Department of Neurology
710 Westwood Plaza
Los Angeles, CA 90095
Email: jbronste@mednet.ucla.edu

24
25
26

27 **Abstract**

28

29 **Background:** Pesticides as a class have been associated with an increased
30 risk of Parkinson's disease (PD), but it is unclear which specific pesticides
31 contribute to this association and whether it is causal. Since chlorpyrifos
32 (CPF) exposure has been implicated as a risk factor for PD, we investigated
33 its association to incident PD and if this association is biologically plausible
34 using human, rodent, and zebrafish (ZF) studies.

35 **Methods:** The association of CPF with PD was performed using the UCLA
36 PEG cohort (829 PD and 824 control subjects), the pesticide use report and
37 geocoding the residence and work locations to estimate exposures. For the
38 mammalian studies, 6 months old male mice were exposed to CPF by
39 inhalation (consistent with human exposures) for 11 weeks and behavioral
40 and stereological pathological analyses were performed. Transgenic ZF
41 were utilized to determine the mechanism of CPF neurotoxicity.

42 **Results:** Long-term residential exposure to CPF was associated with more
43 than a 2.5-fold increased risk of developing PD. Mice exposed to aerosolized
44 CPF developed motor impairment, dopaminergic neuron loss, microglial
45 activation, and an increase in pathological α -synuclein (α -syn). Using ZF,
46 we found that CPF-induced dopaminergic neuron loss was at least partially
47 due to autophagy dysfunction and synuclein accumulation, as knocking
48 down LC3 recapitulated the dopaminergic neuron loss and restoring
49 autophagic flux or eliminating synuclein reduced neuronal vulnerability.

50 **Conclusions:** CPF exposure is associated with an increased risk of
51 developing PD and relevant exposures in animal models establish biological
52 plausibility. In addition to establishing a new risk factor for PD, we
53 identified new therapeutic targets for disease modification.

54 **Introduction**

55 Parkinson's disease (PD) is a slowly progressive neurodegenerative
56 disorder manifested by motor dysfunction and cognitive decline. The
57 primary pathological hallmarks of PD are the selective loss of dopaminergic
58 (DA) neurons in the substantia nigra pars compacta (SNpc), the
59 development of fibrillar cytoplasmic inclusions, also known as Lewy bodies
60 and Lewy neuritis, and inflammation. The major component of Lewy bodies
61 and neurites is misfolded, highly ubiquitinated and phosphorylated α -
62 synuclein (α -syn). The etiology of PD appears complex and involves the
63 interaction of both genetic and environmental factors. A minority of PD
64 cases are caused by mutations in one of several genes, including *SNCA*,
65 *LRRK2*, *GBA*, *VPS35*, *RAB32*, and *PINK1*, that code for proteins involved in
66 proteostasis, mitochondrial function, and inflammation [1-3]. The etiology of
67 the majority of PD cases is not known but likely involves environmental
68 factors. Pesticide exposure as a class of toxicants is one of the strongest and
69 best documented risk factors associated with an increased risk of PD, but
70 few individual chemicals have been identified that confer increased risk [4,
71 5]. It is essential to identify specific pesticide in order to determine whether

72 the associations are causative and what is the underlying mechanism of
73 toxicity.

74 Several studies have investigated the role of environmental toxicants
75 in the development of PD [4, 6] , but there are challenges in determining
76 whether an association is causal. PD develops over decades, and exposure
77 assessment should cover the time before pathology starts. Once a toxicant
78 has been associated with altered risk, further studies are necessary to
79 determine if the disease pathology can be recapitulated by relevant
80 exposures in animal models and the mechanisms by which they act (i.e.
81 biological plausibility). For example, rotenone is one of the very few
82 toxicants that is associated with an increased risk of developing PD and
83 exposure to rotenone results in motor abnormalities, α -syn inclusions, DA
84 neuronal loss, and inflammation [5, 7].

85 Chlorpyrifos (CPF; O,O-diethyl O-3,5,6-trichloro-2-pyridyl
86 phosphorothioate) is a broad-spectrum organophosphate pesticide
87 extensively used in agriculture to control insect pests. This pesticide acts by
88 inhibiting acetylcholinesterase, leading to the death of insects through its
89 neurotoxicity [8]. CPF was widely used in the US until 2000 when the EPA
90 banned its use indoors due to its neurodevelopmental risks to children [9].
91 It continues to be used in agriculture and is generally applied by spraying.
92 Thus, inhalation of CPF is the primary means of human exposure. Although
93 the neurodevelopmental risks of CPF have been well documented, few

94 studies have investigated its association with the risk of developing PD and
95 the mechanism by which it acts [10-14].

96 Here, we report that exposure to CPF is associated with an increased
97 risk of developing PD in a large community-based case-control study. Mice
98 exposed to CPF using a novel inhalation method that recapitulates human
99 exposures, caused impaired motor behavior, loss of DA neurons, increased
100 pathological α -syn, and inflammation. Using transgenic zebrafish (ZF), we
101 found that CPF was toxic to neurons by disrupting autophagic flux and was
102 dependent on γ 1-synuclein (γ 1-syn), the closest functional homologue to
103 human α -syn. Together, these studies strongly implicate exposure to CPF
104 as a risk factor for developing PD and modulators of autophagy is a
105 promising therapeutic target.

106 **Methods**

107

108 *PEG study population*

109 To assess CPF and PD associations, we used the Parkinson's
110 Environment and Genes (PEG) study ($n = 829$ PD patients; $n = 824$ controls).
111 The PEG study is a population-based case-control studies conducted in three
112 agricultural counties in central California (Kern, Fresno, and Tulare) [14,
113 15]. Participants were recruited in two waves: Wave 1 (PEG1): 2000-
114 07, $n = 357$ patients, $n = 400$ population-based controls; and Wave 2 (PEG2):
115 2009-15, $n = 472$ patients, $n = 424$ population-based controls. Patients were
116 enrolled early in the disease course [mean PD duration at baseline,

117 3.0 years (SD = 2.6)] and all were seen by University of California, Los
118 Angeles (UCLA) movement disorder specialists for in-person neurological
119 examinations, many on multiple occasions, and confirmed as having
120 probable idiopathic PD [16, 17]. As shown in Table 1, PD patients were on
121 average slightly older than controls and a higher proportion were men, had
122 European ancestry, and were never smokers.

123 *CPF exposure assessment*

124 We estimated ambient exposure due to living or working near
125 agricultural CPF application, using pesticide use report (PUR) pesticide
126 application data within a geographical information system (GIS)-based
127 model [18]. Since 1972, California law mandates the recording of
128 commercial pesticide use in a database maintained by the California
129 Department of Pesticide Regulation (CA-DPR) that includes all commercial
130 agricultural pesticide use by pest control operators and all restricted
131 pesticide use until 1989, and afterwards (1990-current), all commercial
132 agricultural pesticide use. This database records the location of
133 applications, which was linked to the Public Land Survey System (PLSS),
134 and the poundage, type of crop, and acreage a pesticide has been applied
135 on, as well as the method and date of application. We combined the PUR
136 with maps of land use and crop cover, providing a digital representation of
137 historical land use, to determine pesticide applications at specific
138 agricultural sites [19]. PEG participants provided lifetime residential and
139 workplace address information, which we geocoded in a multi-step process

140 [20]. As shown in Figure 1, the scatter plot of the data is accompanied by
141 smoothed trend lines based on local regressions (Figure 1B-C). We
142 determined the pounds of CPF applied per acre within a 500-meter buffer of
143 the latitude and longitude representing each residential and workplace
144 address per year since 1974, weighting the total poundage by the
145 proportion of acreage treated (lbs/acre). For our study participants, this
146 resulted in 12,904 annual records for residential and 8,968 for occupational
147 site CPF exposure. After we identified and removed several extreme outliers
148 (values > 99th percentile of the distribution), the resulting data ranged from
149 0 to 108.44 lbs/acre. We also estimated exposure to paraquat, diazinon, and
150 glyphosate in a similar manner for co-exposure adjustment.

151 *Mouse strain*

152
153 Six-month-old, 24 male wild-type mice on C57BL/6 background
154 weighing 29–33 g were purchased from the Jackson Laboratory,
155 Sacramento, California, USA. The mice were housed in a vivarium with
156 12/12 hours of light and dark cycles. UCLA Animal Research Committee
157 approved all experiments using animals in accordance with the US National
158 Institutes of Health guidelines.

159

160 *CPF exposure by inhalation*

161 Sixteen 26-week-old male mice were exposed to aerosolized CPF
162 (Sigma #45395) and another 16 were exposed to room air passed through
163 the control vehicle containing 2% ethanol in identical chambers using

164 custom-built whole-body chamber systems (CH Technologies, Westwood,
165 NJ). The chamber holds up to 20 mice and is connected to a Blaustein Jet
166 Atomizer, which produces aerosols that are tightly controlled with a Lab
167 Flow C Control box. Aerosols were generated from solutions containing
168 CPF (0.2 mg/mL) in 75% ETOH at a flow rate into the atomizer of 16 mL/hr
169 while aerosol generator air flow was 1.5 L/min and dilution air flow was 4.5
170 L/min. The concentration of CPF initially in the chamber was 76.63 $\mu\text{g}/\text{m}^3$
171 and was gradually increased to 300 $\mu\text{g}/\text{m}^3$. Mice were exposed 5 days/wk.
172 for 6 hrs./day for 11 weeks with total exposures of 0.65-2.9 $\text{mg}/\text{m}^3/\text{day}$.

173

174 *Behavioral testing*

175 Behavioral testing was performed prior to CPF exposures and 3 days
176 after the final day of exposure to wash out any residual effects of the
177 pesticide and vehicle.

178 **Rotarod Test:** Rotarod testing was carried out as previously described [20,
179 21]. Mice were trained to run on the rotarod (Bioseb, Park, FL USA) with
180 four 5-minute trials at 12 rotations per minute (rpm) separated by five
181 minutes. One hour later, mice were placed on the rotarod at 4 (rpm) and the
182 speed was linearly accelerated to 40 rpm over 300 seconds. The latency to
183 fall and speed at which the mice fell were recorded. The mean latency to fall
184 was calculated from two consecutive trials in each mouse.

185
186 **Wire Hang Test:** Wire hang testing was carried out according to a modified
187 protocol as previously described [20, 22]. Briefly, the mice were placed on

188 the top of a wire mesh (wire diameter 0.047" with 0.45" openings)
189 connected to a stepper motor controlled by an Arduino microcontroller,
190 with speed set to 15 rpm. At the start of the trial, the wire mesh was
191 sequentially rotated 36 degrees in one direction then the other, causing the
192 mice to grip the wires, and then flipped 180 degrees so mice were
193 suspended upside down. Latency to fall was measured using an infrared
194 sensor placed below the wire mesh. If mice did not fall within 15 minutes,
195 the trial was terminated.

196
197 Open Field Test: Open field testing was performed using a custom-made
198 acrylic square arena (16" x 16" x 12") with a grey floor that was evenly
199 illuminated to 100-200 lux [20, 23]. During the trial, the mice were allowed
200 to explore freely for 10 minutes while being videotaped. A deep neural
201 network was trained on behavior videos to identify arena boundaries and
202 anatomical markers on mice (nose, ears, and tailbase) using DeepLabCut
203 [20, 24]. The trained model was then used to automatically extract marker
204 positions during each video frame. Mouse position was calculated as the
205 centroid of the polygon between the mouse ear and tailbase markers, and
206 custom-written code in MATLAB was used to calculate mean velocity,
207 distance traveled, and time in the center of the arena (defined as a square
208 20% of the arena diameter away from each wall).

209

210 *Liquid Chromatography-Tandem Mass Spectrometry LC-MS/MS*

211 Commercially available CPF was acquired from Chem Service Inc.

212 Diethyl-d10 (CPF-d10) is obtained from CDN Isotopes. Methanol and

213 acetonitrile optima LC/MS grade were purchased from Thermo Fisher

214 Scientific. Standards, controls, and brain tissue samples were prepared in 2

215 ml bead-beating tubes in duplicates. A five-concentration point (100, 200,

216 400, 800, 1600 ng/50mg) standard curve and two control samples at low

217 (200 ng/50mg) and high (1600 ng/50mg) concentrations were utilized for

218 compound quantification. Standards, controls, and brain tissue samples

219 stored at -80°C were left to thaw at ambient temperature. To each tube

220 were added six 1.4 mm and three 2.8 mm ceramic beads, 400 ng diethyl-d10

221 stock solution as an internal standard (IS) prepared in acetonitrile, and 500

222 mL of a 4:1 mixture of acetonitrile/ deionized water for extraction. The

223 samples were homogenized in the bead-beater for 30 seconds and

224 centrifuged at 16000 x g for five minutes. The supernatant was transferred

225 to new, respectively labeled 1.5 ml microcentrifuge tubes, and samples

226 were dried down in a low-speed vacuum concentrator. The samples were

227 then reconstituted in 100 μ l of a methanol/water (v/v 70/30) mixture,

228 vortexed thoroughly, and centrifuged at 16000 x g for five minutes. The

229 supernatant was transferred to HPLC vials, from which 15 μ l was injected

230 into the mass spectrometer system for analysis. Analysis of the analyte

231 concentration was done at the UCLA Pasarow Mass Spectrometry Lab. A

232 targeted LC-MS/MS multiple reaction monitoring (MRM) acquisition

233 method was developed and optimized on a 6460 Agilent Technologies triple
234 quadrupole mass spectrometer. The mass spectrometer was coupled to a
235 1290 Infinity HPLC system (Agilent Technologies) through a Scherzo SM C-
236 18 analytical column (3 μ m 50 x 2 mm UP). For compound elution, a
237 mixture of solvent A (water/formic acid v/v 100/0.1) and solvent B
238 (acetonitrile/formic acid v/v 100/0.1) was used as a mobile phase combined
239 with a linear gradient (min/%B: 0/0, 2/5, 6/100, 7/100, 8/5, 10/5). For the
240 MRM method, the transition from the precursor ion m/z 349.9 to the
241 production m/z 97 isolated for CPF was monitored in positive ion mode at a
242 specific LC retention time. The standard curve was made by plotting the
243 known amount of analyte per standard vs. the ratio of measured
244 chromatographic peak areas corresponding to the analyte over that of the
245 IS (analyte/IS). The trendline equation was used to calculate the absolute
246 concentrations of the analyte in brain tissue.

247

248 *Mouse Immunohistochemistry*

249 After perfusion and fixation of six CPF-exposed and six control mice,
250 brains were embedded in paraffin blocks, cut into 6 mm sections and
251 mounted on glass slides as previously described with some modifications
252 [20, 25]. Briefly, samples containing slides were deparaffinized and
253 rehydrated, followed by immersion in 88% formic acid for 5 minutes to
254 enhance antigen detection. Then the sections were treated with 5%
255 hydrogen peroxide (Sigma#H1009) in methanol (Fisher Scientific#A454-4)

256 for 30 min to quench endogenous peroxidases. The sections were then
257 blocked in 0.1 M Tris with 2% fetal bovine serum (Tris/FBS) for 5 min. Both
258 TH primary and secondary antibodies were diluted in Tris/FBS. Samples
259 were then incubated with primary antibody (Abcam#AB76442) overnight at
260 4°C. Following washing, sections were incubated for 1 hour with species-
261 specific biotinylated secondary antibody (VectorLabs#BA-9010) and then
262 for 1 hour with VECTASTAIN® Elite® ABC-HRP Kits (VectorLabs#PK-
263 6100). After rinsing with 0.1M Tris, the slides were incubated for 4 minutes
264 with DAB reagent (VectorLabs#SK-4105). In subsequent steps, slides were
265 rinsed and washed, counterstained in Hematoxylin (Fisher
266 Scientific#6765001), then dehydrated and cover slipped. Slides were
267 scanned into digital format on a Lamina scanner (Perkin Elmer) at 20x
268 magnification. Digitized slides were then used for quantitative pathology.
269 All TH positive neurons in the midbrain (SNpc and VTA) were counted in a
270 blinded manner.

271 In a separate group of 6 pairs of mice, brains were quickly removed
272 after perfusion with PBS and euthanasia and cut in half sagittally. Half of the
273 brains were quickly frozen for biochemical studies, and the other half were
274 fixed in 4% paraformaldehyde for at least 24 hrs. Following dehydration in
275 30% sucrose, they were embedded in OCT (Sakura Finetek#4583) and 40 μ M
276 sections were collected. The sections were blocked with 3% FBS and 3%
277 bovine serum albumin (Sigma#B-4287) and incubated overnight at 4°C in
278 primary antibodies, washed with PBS and incubated in secondary antibodies

279 overnight at 4°C before cover slipping. Primary antibodies used were anti-TH
280 (Abcam#ab76442; 1:500 dilution), anti-pS129 (Abcam#ab51253; 1:1000
281 dilution), anti-ubiquitin (Santa Cruz Biotechnology#sc-271289; 1:500
282 dilution), anti-IL-1 β (Thermo Fisher Scientific#P420B; 1:250 dilution), anti-
283 Lc3 (Cell Signaling Technology#83506; 1:500 dilution), anti-Lamp2a
284 (Abcam#ab18528; 1:250 dilution) and anti-Iba1 (Synaptic Systems#234 308
285 Gp311H9; 1:500 dilution). The secondary antibodies used were Goat anti-
286 Mouse IgG (H+L) Cross-Adsorbed, Alexa Fluor™ 488 (Thermo Fisher
287 Scientific#A-11001); 1:1000 dilution, Goat anti-Rabbit IgG (H+L) Cross-
288 Adsorbed, Alexa Fluor™ 488 (Thermo Fisher Scientific#A-11008); 1:1000
289 dilution, Donkey anti-Chicken IgY (H+L) Cross-Adsorbed, Alexa Fluor™ 568
290 (Thermo Fisher Scientific#A78950); 1:1000 dilution, Goat anti-Mouse IgG
291 (H+L) Cross-Adsorbed, Alexa Fluor™ 405 (Thermo Fisher Scientific#A-
292 31553); 1:1000 dilution, Goat anti-Rabbit IgG (H+L) Cross-Adsorbed, Alexa
293 Fluor™ 647; 1:1000 dilution, and Goat anti-Guinea Pig IgG (H+L) Highly
294 Cross-Adsorbed, Alexa Fluor™ 647, 1:1000 dilution]. The sections were
295 imaged using a Zeiss Z.1 Light dual-sided illumination sheet fluorescence
296 microscope, equipped with ZEN software. Quantification of pS129-syn,
297 ubiquitin, LC3, and Lamp2a were performed blindly by identifying TH
298 neurons in the red channel and measuring fluorescence in the green channel.

299

300 *Microglia analysis in mice*

301 Images of mouse microglia were obtained using a 40x Z-stack
302 confocal microscopy were processed and refined using ImageJ for further
303 analysis. The “far red channel” images were used to define regions of
304 interest (ROIs) for the corresponding microglia channel. Multilayer confocal
305 images were compressed to generate projected microglia images. These
306 images were then converted to binary and further processed with a median
307 filter (radius = 2.0 pixels). To restore continuity in microglia structures
308 fragmented by binarization, dilate and close operations were applied. ROIs
309 from the far-red channel were applied to the microglia channel to establish
310 brain region boundaries. Finally, individual microglia cells were analyzed
311 using ImageJ’s “wand tracing tool,” measuring area, perimeter, and
312 roundness within the ROIs.

313

314 *Biochemical fractionation and immunoblot*

315 Extractions were performed using a modified procedure of Henderson
316 et al [20, 26]. Briefly, mouse brains (half) were homogenized in 9 volumes of
317 high salt (HS) 1% Triton X buffer with protease and phosphatase inhibitors
318 using Dounce homogenizers for 20 strokes. The samples were centrifuged
319 at 100,000 x g for 30 min and supernatants were stored at -80. The pellets
320 were homogenized in 9 volumes HS-Triton X buffer with 30% sucrose and

321 centrifuged at 100,000 x g for 30 min at 4⁰C. Supernatants were again
322 stored at -80⁰C. The pellets were homogenized in 9 volumes 1% Sarkosyl
323 HS buffer, shaken for 30 min at room temperature (RT), and spun at
324 100,000 x g for 30 min. The resultant pellet was washed in 1.4 mL PBS
325 without Ca⁺⁺ or Mg⁺⁺, resuspended in DPBS, and sonicated. An equal
326 volume of supernatants from each extraction was combined and run on a
327 12% Bolt Bis Tris gel (Thermo Fisher Scientific#NP0321BOX) for 50 min at
328 150 volts, transferred to a nitrocellulose membrane, and blocked in 5% non-
329 fat milk. Primary antibodies were diluted in 1% non-fat milk and are as
330 follows: for pS129 (Abcam#ab51253; 1:2000 dilution), SQSTM1/p62 (Cell
331 Signaling Technology#5114; 1:2500 dilution), LC3B (Cell Signaling
332 Technology##3868; 1:2500 dilution), beclin1 (proteintech#11306-1-AP;
333 1:2500 dilution) and tubulin (Abcam#ab52866; 1:2500 dilution).
334 Secondary donkey anti-rabbit horseradish peroxidase (HRP) (Santa Cruz
335 Biotechnology#sc-2004; 1:2500 dilution) antibody diluted in 1% non-fat
336 milk. Blots were developed in ECL Plus substrate for 5 minutes before
337 imaging under Azure 300 - Chemiluminescent Imaging System and band
338 intensity was quantified using ImageJ. The pSer129 blots were developed
339 with SuperSignal Atto substrate.

340

341 *Cytokine Assays*

342 Enzyme-linked immunosorbent assays (ELISA) were used to quantify
343 the following cytokines: IL-1 α , IL-1 β , TNF- α , IL-6, IL-10 and IFN- γ levels in
344 the soluble fractions from control and CPF-exposed mouse brains. The
345 multiplex ELISAs were performed in triplicate by Quansys Biosciences (Q-
346 Plex Mouse Cytokine Panel 1 HS, Logan, UT).

347

348 *ZF husbandry, strains and exposures*

349 Transgenic lines and wild-type (AB) ZF were maintained at 28°C, fed
350 brine shrimp twice a day, and kept on regulated by 14/10 hours light/dark
351 cycles. Fish eggs were obtained from natural mating, and embryos were
352 collected and staged based on post-fertilization days. Transgenic ZF
353 Tg(*vmat2*:GFP) [20, 27] expressing green fluorescent protein (GFP) driven
354 by the vesicular monoamine transporter promoter (VMAT2) were used to
355 identify aminergic neurons including DA neurons. Tg(*isl1*[ss]: Gal4-VP16,
356 UAS: EGFP)zf154 [20, 28] transgenic line was used to visualize trigeminal
357 and Rohon-Beard peripheral sensory neurons. To study microglial activation
358 and autophagy, Tg(*mpeg1*:mCherry)[20, 29] and
359 Tg(*elavl3*:eGFP: *map1lc3b*)[30] lines were utilized, respectively. All
360 experiments were conducted following protocols approved by the Animal
361 Research Committee at the University of California, Los Angeles. ZF

362 embryos were manually dechorionated and were exposed to 250 nM CPF at
363 24 hpf at 28°C for 4-6 days.

364

365 *ZF immunostaining and imaging*

366 ZF larvae were anesthetized with 0.01% tricaine methane sulfonate
367 (tricaine-S; Sigma-Aldrich#E10521), and fixed in 4% paraformaldehyde
368 (PFA) overnight at 4°C. The larvae were washed in 1X Dulbecco's
369 Phosphate Buffered Saline (DPBS, ThermoFisher Scientific #J67670.K2)
370 and treated with 1 mL peroxide mix (3% H²O² + 0.8% KOH in DPBS) for 8-
371 10 minutes to bleach pigment. The larvae were washed with DPBS three
372 times at RT immediately after the peroxide treatment and permeabilized for
373 5-7 minutes with 10 µg/mL Proteinase K (ThermoFisher Scientific
374 #EO0491). Larvae were then washed in ddH₂O and placed in a 10%
375 blocking solution of 5% BSA + 5% goat serum for 1 hour and incubated with
376 primary antibody (anti-GFP; ThermoFisher Scientific #A11120, 1:500
377 dilution; anti-mCherry, Abcam #ab167453, 1:500 dilution; anti-TH, Sigma-
378 Aldrich #MAB318, 1:250 dilution; or anti-Active Caspase-3, BD
379 Pharmingen#559565, 1:500 dilution) in 1% BSA + 1% goat serum overnight
380 at 4°C. After five washes at 15-minute intervals, the larvae were incubated
381 in secondary antibody overnight at 4°C. After the secondary antibody
382 washes, the samples were placed in 50% glycerol for 30 minutes and
383 cleared in 100% glycerol. Larvae were dissected and mounted in 100%
384 glycerol for imaging on the Leica SPE (Leica Microsystems Inc, Buffalo

385 Grove, IL) confocal microscope. The *vmat2*:GFP positive neurons, TH
386 neurons, microglia, and caspase-positive cells in the telencephalon and
387 diencephalon regions were imaged in Z-stacks and analyzed. Peripheral
388 sensory neurons were imaged and quantified by anesthetizing the
389 transgenic *isl1*:GFP positive larvae and imaged at 10× magnification in the
390 tail region and analyzed.

391

392 *γ1-syn knockout ZF*

393 Exon 1 of the ZF *sncg1* gene encoding γ1-syn [20, 31] (also called
394 *sncg1*) was targeted using a pair of custom transcription activator-like
395 effector nucleases (TALENs; Supplemental Figure 1) [32]. Possible target
396 sequences were found using ZiFiT [33] and selected to: (i) encompass a
397 unique restriction site that could be used to identify mutants and (ii) avoid
398 off-target homology by BLAST search. DNA constructs encoding custom
399 TALENs were generated by iterative assembly using the Joung Lab TAL
400 plasmid set [20, 32]. The resulting TALEN plasmids were linearized and
401 transcribed *in vitro* to generate mRNA (mMessage Machine T7, Invitrogen).
402 Single cell ZF embryos were microinjected with 300 pg mRNA for each
403 TALEN (total 600 pg) in 0.5 – 1.0 nL microinjection buffer. Surviving
404 embryos were raised to sexual maturity and screened for the germline
405 transmission of *sncg1* deletions by pairwise mating followed by PCR
406 amplification and restriction digest of DNA from progeny embryos. Mating
407 pairs with germline transmission were then outcrossed and their progeny

408 were raised to adulthood. F1 founders were identified by fin clip PCR and
409 the mutant allele was cloned and sequenced. We identified 3 different
410 mutant alleles with deletions between 8-14bp (Supplemental Figure 1A). We
411 selected a 13bp deletion (allele designation Pt131) that is predicted to
412 disrupt the *sncg1* open reading frame (Supplemental Figure 1B) for further
413 analysis. The line was expanded from a single F1 founder and outcrossed
414 through four generations prior to analysis to remove any off-target
415 mutations. Heterozygous in-crosses resulted in progeny genotypes at the
416 predicted Mendelian frequency and the *sncg1*^{Pt131} mutation was stable over
417 multiple generations. Homozygous *sncg1*^{Pt131/ Pt131} ZF were viable, fertile
418 and showed no morphological or behavioral deficits during larval
419 development. Rapid genotyping of the Pt131 allele exploited the deletion of
420 a unique *AfeI* restriction site in exon 1 of *sncg1* in the mutant
421 (Supplemental Figure 6C). Genomic DNA was extracted from adult fin clips
422 or whole embryos and amplified using primers *sncg1F* 5'-
423 CCTCTCTCTGTCATTGAAAC-3' and *sncg1R* 5'-TAGGAAACACATGCACACAC-
424 3'. The resulting 256bp amplicon was then digested with *AfeI* (New England
425 Biolabs), yielding bands of 164bp and 92bp for the WT allele, and a single
426 band of 243bp for the deletion allele (Supplemental Figure 1C). Western
427 blot analysis of adult brain homogenates showed the expected 14kDa γ 1-syn
428 band in WT siblings but reduced expression in heterozygous *sncg1*^{+/ Pt131} ZF
429 and complete loss of γ 1-syn expression in homozygous *sncg1*^{Pt131/ Pt131} ZF
430 (Supplemental Figure 1D). These data confirm that Pt131 is a null allele.

431 The homozygous mutant is correspondingly abbreviated to *sncg1*^{-/-}
432 throughout the remainder of the paper.

433

434 *ZF behavior assay*

435 ZF larvae were treated from 1 to 7 dpf with 250 nM CPF and washed
436 with E3 egg water for 6 hours prior to testing. Morphologically normal
437 appearing ZF larvae (7 dpf) were transferred to 96-well plates with 16
438 larvae per condition, acclimated in the dark for 30 minutes, and their
439 movements were monitored using a ZebraBox (ViewPoint ZebraLab,
440 Civrieux, France). A 10-minute light/10-minute dark cycle was used for 3
441 cycles for a total of 1 hour of recording. The distances moved by larvae
442 during each increment of 10 minutes were averaged.

443

444 *LysoTracker labeling and microglial analysis in ZF*

445 We used *LysoTracker* staining to image lysosomes in living ZF.
446 Tg(*mpeg1*:mCherry) ZF (5 dpf) that have microglia labeled with mCherry,
447 were incubated in the dark for 45 minutes using 10 μ M LysoTracker Green
448 DND-26 (ThermoFisher Scientific#L7526) diluted in the treatment solution
449 and then washed three times in E3 medium before mounting and imaging.
450 Microglial structure was analyzed using ImageJ software as previously
451 described [34, 35]. Briefly, Z-projected images were converted into a 16-bit

452 grayscale file. The images were then made binary, and the skeletonization
453 algorithm at FIJI was used for quantification.

454
455 *Measurement of Autophagic Flux*

456 To measure autophagic flux in ZF neurons, we used transgenic
457 [Tg(*elavl3:eGFP:map1lc3b*)] ZF larvae as previously described [30, 34].
458 Briefly, ZF larvae were treated with 250nM CPF between 24 and 120 hpf.
459 The larvae were anesthetized with 0.01% tricaine and mounted with 1%
460 low-melting agarose in a glass-bottom culture plate. eGFP-Lc3 punctate
461 were counted with confocal imaging using a 40x oil immersion objective
462 (numerical aperture = 1.15) and an excitation laser line of 488 nm. Z-stacks
463 comprised 13 sections, and each section of punctate eGFP-Lc3 positive
464 tectum regions was acquired with a slice thickness of 1.5 μ m and 1024x1024
465 pixel resolution. For the flux assay, ZF larvae were incubated with 2 μ M
466 BafA1 (Cayman Chemical, 11038) for 55 minutes and then immediately
467 washed three times with E3 water prior to live imaging. For restoring
468 autophagic flux, larvae were treated with 7.5 μ M calpeptin (Sigma-
469 Aldrich#C8999) from 48 hpf to 7 dpf with solution refreshed daily.

470
471 *Western blots*

472 For analysis of ZF proteins, approximately 40 brains were dissected
473 and homogenized with Radio-Immunoprecipitation Assay (RIPA) lysis buffer
474 with protease inhibitor. After homogenization on ice, samples were
475 centrifuged and protein concentrations in the supernatant were determined

476 using the Bicinchoninic acid (BCA) assay. A final volume of 25 μ l was used
477 to load and run 20–30 μ g of protein on a 12% SDS-PAGE gel with 1-
478 mercaptoethanol and 1x loading dye. Using XCell-II Blot Module
479 (ThermoFisher Scientific#EI9051), proteins were transferred to the
480 nitrocellulose membrane. Afterward, the transferred membrane was
481 blocked in 5% non-fat milk for 2 hours at RT and probed with anti-*sncg1*
482 (generated as described previously[34, 36]), anti-Sqstm1/p62 (Cell
483 Signaling Technology#5114; 1:1000 dilution), anti-tubulin (Sigma
484 Aldrich#T9026; 1:2500 dilution) primary antibodies at 4°C overnight. Then
485 the membranes were washed with Tris-buffered saline (50 mM Tris base,
486 150 mM NaCl, pH 7.5) with Tween-20 (Bio-Rad Laboratories, 1610781)
487 (TBST) followed by donkey-anti-rabbit HRP (Santa Cruz Biotechnology#sc-
488 2313; 1:2500 dilution), goat-anti-rabbit (Vector Laboratories
489 Burlingame#BA-1000; 1:2500 dilution), and goat-anti-mouse HRP
490 (ThermoFisher Scientific#62-6520; 1:2500 dilution) secondary antibodies.
491 Bands were visualized by exposing the blots using chemiluminescent
492 substrate ECL Plus (ThermoFisher Scientific#32132) and then quantified
493 using ImageJ's gel analysis feature.

494

495 *RNA extraction, cDNA preparation, and rtPCR analysis*

496

497 RNA was extracted from ZF larvae at 5 days post fertilization using
498 TRIzol reagent (Invitrogen, 15596026) according to the manufacturer's
499 instructions and converted into cDNA using iScript™ cDNA Synthesis Kit
500 (Bio-Rad Laboratories#1708890). Gene-specific primer sets (β -actinF 5'-

501 TTCCTTCCTGGGTATGGAATC-3', β -actinR 5'-GCACTGTGTTGGCATAACAG G-
502 3'; *sncg1F* 5'-ATGGTGGTATGGAAGGAGGA-3', *sncg1R* 5'-
503 GGGCTCAGGGAAAGTCT TTT-3'; p62F 5'-GTCATATGGGTCCATCTCCAAT-3',
504 p62R 5'-AGGTGGGGCACAAAGTCA TAA-3') were used to conduct the real-
505 time (rt) PCR reaction using SsoAdvanced Universal SYBR Green Supermix
506 (Bio-Rad Laboratories#1725270) and cDNA. The $2^{-\Delta\Delta C_T}$ method was used to
507 represent fold change values from cycle number data.

508

509 *Genetic inhibition of microglial development and autophagy in ZF*

510 To determine if microglia were contributing to aminergic neuron loss
511 after CPF exposure, we used PU.1 targeted morpholino oligonucleotides
512 (MOs) to inhibit microglial development. We targeted LC3 expression with
513 MOs to determine if reduced autophagic flux can lead to aminergic neuron
514 loss. Both MOs targeted the translational start codon (ATG) and were as
515 follows: LC3, 5'-AGATCTGCCTAATTACTATCGTTT-3'; PU.1 5'-
516 GATATACTGATACTCCATTGGTGGT-3'; and scramble MO as a control 5'-
517 CCTCTTACCTCAGTTACAATTATA-3' (Gene Tools, LLC). ZF embryos from
518 1- to 4-cell stages were injected into the yolk with MO stocks (1 mM) diluted
519 1:1 with 2% phenol red dye as previously described [34].

520

521 *Statistical analysis*

522 As a part of the PEG analysis, we used univariate, unconditional
523 logistic regression to estimate odds ratios (ORs) and 95% confidence
524 intervals (CIs) for PD and CPF exposure separately by time window and
525 location. As controls, we examined temporal trends in pesticide use based
526 on age, gender, race/ethnicity, study wave, and index year (year of
527 diagnosis or interview). Statistical analyses for mouse and ZF studies
528 utilized the Student T-test and two-way ANOVA with the Bonferroni
529 correction where appropriate and are listed in figure legends. Error bars
530 were presented as mean \pm standard error of mean (S.E.M). The statistical
531 significance level for all studies was set at $p < 0.05$.

532 **Results**533
534 *CPF exposure and its association with PD*

535 To assess the impact of CPF exposure on PD risk, we utilized the
536 Parkinson's Environment and Genes (PEG) study and performed an updated
537 analysis of a previous report that included more subjects and controlled for
538 additional exposures ($n = 829$ PD patients; $n = 824$ controls) [34, 37]. PD
539 patients were, on average, slightly older than controls, a higher proportion
540 were men, had European ancestry, and were never smokers (Figure 1A,
541 Table 1). We estimated ambient exposure to CPF due to living or working
542 near agricultural facilities applying CPF over a 30-plus year period. We

543 observed positive associations between CPF and PD with exposure
544 estimated at residential and workplace addresses and over different
545 exposure time windows (Figure 1D, Table 2). The strongest association was
546 with the longest duration of exposure at the workplace, with an OR of 2.74
547 (CI 1.55, 4.89). Importantly, CPF exposures that occurred 10-20 years prior
548 to disease onset were more strongly associated with PD than the 10-year
549 period before PD onset. These associations were similar when adjusted for
550 occupational pesticide exposures and other common ambient pesticide
551 exposures (paraquat, glyphosate and diazinon; Supplemental Table 1).

552

553 *Effects of inhaled CPF on motor behavior in mice*

554 Most human pesticide exposure is through inhalation, which escapes
555 the 1st pass circulation to the liver with oral ingestion and therefore reduces
556 its metabolism. To model human exposures, mice were exposed to
557 aerosolized CPF or ethanol vehicle in closed chambers five days a week for
558 11 weeks. We found in preliminary experiments that female mice were
559 much more resistant to CPF than males (data not shown), therefore, only
560 male mice were tested in the current study. The concentrations of CPF used
561 were determined empirically (the highest dose that was well tolerated), and
562 it was increased over time as the mice adapted to the exposures. CPF-
563 exposed mice maintained their body weight as did the ethanol vehicle
564 controls until the last week of the experiment (Figure 2A). The
565 concentration of CPF in the chamber reached 650 µg/m³/day initially and

566 peaked at 2900 $\mu\text{g}/\text{m}^3/\text{day}$ by week 11 (Figure 2B). Concentration of CPF in
567 the brains of exposed mice was measured by liquid chromatography-tandem
568 mass spectrometry and reached 1.44 to 2.42 ng/mg tissue (Figure 2C).

569 Mouse behavior was analyzed before the initiation of CPF exposures
570 and 3 days following the last day of exposure using rotarod, wire hanging,
571 and open field testing. The 3-day washout was used to ensure that the
572 behavior was not altered by CPF or vehicle and likely reflected underlying
573 pathology. The baseline measurements for the open field tests for the CPF
574 group were different than the controls but both the exposed and control
575 mice performed worse after 11 weeks (Supplemental Figure 2). CPF-
576 exposed mice deteriorated more than controls in both rotarod, and wire
577 hang tests, but not in the open field test (Figure 2D-F).

578
579 *CPF exposure leads to the loss of DA neurons*

580 A core pathological feature of PD is the relative selective loss of DA
581 neurons, which results in impaired motor behavior. We determined the total
582 number of DA neurons in control and CPF-exposed mice using stereological
583 methods. CPF inhalation resulted in a 26% loss of tyrosine hydroxylase (TH)
584 positive dopaminergic neurons in the SN compared to control mice. This DA
585 neuron loss in the SN was selective, as CPF exposure did not affect the
586 ventral tegmental area (VTA) DA neurons in comparison to control animals
587 (Figure 3A). Staining for TH in the striatum was reduced in the CPF-
588 exposed brains relative to controls, consistent with DA neuron loss in the
589 SNpc, but the difference did not reach statistical significance ($p = 0.06$,

590 Figure 3B). Phosphorylated α -syn at serine 129 (pS129) is a biomarker for
591 pathological forms of α -syn and is elevated in PD brains. Western blot
592 analysis confirmed that pS129 was significantly elevated 1.66-fold in the
593 insoluble fractions of the CPF brains compared to controls (Figure 3C,
594 Supplemental Figure 3) and a trend for increased pS129 protein level in the
595 Sarkosyl soluble fractions (Supplemental Figure 3). We found elevated
596 levels of pS129 staining and ubiquitin in DA neurons of the SNpc compared
597 to controls, whereas staining was similar in VTA neurons (Figure 3D-G).

598 The increase in phosphorylated α -syn and ubiquitin in DA neurons in
599 CPF-treated mice suggested that the accumulation might be due to
600 dysfunction in protein degradation. Indeed, LC3-II and lamp 2a levels were
601 reduced in TH-positive neurons in both the SNpc and VTA suggesting a
602 defect in autophagy (Figure 4). This defect does not appear to be
603 widespread since Western blot analysis of LC3-II, p62 and Beclin1 in the
604 soluble fraction from the CPF-treated whole brain homogenates did not
605 show any differences from control fractions (Supplemental Figure 4)

606
607 *Microglia take on an activated morphology after CPF exposure*

608 CNS inflammation is a common feature in PD and may contribute to
609 its pathogenesis [34, 38]. Microglia change their shape and become more
610 rounded in response to various stimuli such as environmental toxicants and
611 infections [34, 38-40]. To investigate whether microglia take on an activated
612 morphology after CPF exposure, we determined the mean size and
613 perimeter of Iba1-stained cells using the method of Fernandez-Arjona et al

614 [41]. We found that CPF-exposed microglia were more rounded and had
615 shorter projections in the SNpc and VTA but not in the SNpr (Figure 5A-C).
616 These morphological changes are consistent with activated microglia
617 similar to those seen in PD brains. We tested the brain soluble fractions for
618 the proinflammatory cytokines IFN γ , IL-1 α , IL-1 β , IL-6, and TNF α and the
619 anti-inflammatory cytokine IL-10 by ELISA. All cytokines except IL-1 α and
620 IL-1 β were at the lower end of detectability and there were no statistical
621 differences between the CPF-exposed brains and controls (Supplemental
622 Figure. 5). We did find a non-significant increase in IL-1 β in the SNpc
623 region but not in the soluble fractions of whole brain homogenates (Figure
624 5).

625

626 *CPF exposure induces selective neurotoxicity to DA neurons in ZF*

627
628 We have found that exposure to CPF is associated with an increased
629 risk of developing PD and that mice exposed to CPF through inhalation
630 develop many PD features, including motor dysfunction, loss of DA neurons,
631 α -syn pathology and activated microglia. To determine the mechanism of
632 CPF neurotoxicity, we utilized transgenic ZF that are transparent and
633 contain a well-developed DA system in the larval stage. Dechorionated ZF,
634 24 hours post fertilization (hpf), were exposed to 0 to 100 μ M CPF for 6 days
635 to determine its overall toxicity and found that all fish died at 30 μ M or
636 higher by day 7 (Supplemental Figure 6A, B). To determine whether CPF is
637 toxic to aminergic neurons, including DA neurons, we have utilized the

638 transgenic (Tg) *vmat2*:GFP line that expresses GFP under the control of
639 vesicular monoamine transporter 2 (*vmat2*) promoter to monitor aminergic
640 (DA, noradrenergic, and serotonergic) neuronal integrity as previously
641 described [34, 36, 42]. We used the lowest concentration at which we
642 observed decreased locomotor activity (250 nM) for all subsequent
643 experiments. A stereotypical pattern of swimming response to light was
644 observed in vehicle-treated embryos and CPF-treated fish at 5 dpf at similar
645 speeds but the CPF-exposed ZF swam slower than controls in the dark at 7
646 dpf (Supplemental Figure 6C-F). This pattern of ZF behavior is consistent
647 with DA neuron loss [34, 36].

648 The integrity of the aminergic system in ZF was determined at 5 and 7
649 dpf after CPF (250 nM) exposure. The number of aminergic neurons in the
650 telencephalic (Tc), diencephalic (Dc), and TH positive neurons in the Dc
651 clusters at 5 and 7 dpf ZF embryos were significantly reduced (Figure 6A-
652 C). Interestingly, increased apoptosis was observed in the telencephalic and
653 diencephalic regions of 5 dpf embryos but not in the larvae at 7 dpf
654 (Supplemental Figure 7), suggesting that this is the time of active neuronal
655 death. In order to test for selective DA neuron loss as seen in PD brains, we
656 exposed 7 dpf Tg(*isl1*[ss]:Gal4-VP16,UAS:eGFP)^{zf154} larvae expressing GFP
657 in Rohon-Beard neurons to 250 nM CPF and found no differences compared
658 to controls at 7 dpf (Figure 6D).

659 *Exposure to CPF activates microglia but does not contribute to*
660 *neurotoxicity.*

661

662 Another pathological feature of PD is CNS inflammation, which we
663 also found in the CPF-exposed mice. We utilized MPEG-mCherry transgenic
664 ZF larvae that have red microglia and exposed them to CPF and found a
665 higher number of microglia that were more rounded and had shorter
666 processes at 7 dpf compared to controls (Figure 7A). Furthermore, the
667 maximum branch length, the number of branches, and the number of
668 junctions of microglia decreased. These structural changes in microglia are
669 indicative of a more activated state, similar to that observed in mice.
670 Activated microglia have more and/or larger lysosomes [43] so we used
671 lysotracker labeling and live imaging to determine if the microglia were
672 functionally activated. We found that the fluorescence intensity (MFI) of
673 lysotracker in mCherry-labeled microglia was significantly increased
674 following exposure to CPF consistent with microglia activation (Figure 7B,
675 Supplemental Figure 8).

676 To evaluate whether microglia were involved in CPF-induced
677 neurotoxicity, we inhibited microglial development using PU1 morpholinos
678 (MO) before exposing the larvae to CPF. As shown in Figures 7C and 7D,
679 injection of PU1 MO resulted in marked reductions (87%-91%) of
680 *mpeg1:mCherry*-positive microglia up to 7 dpf in both Tc and Dc regions of
681 the brain. Neither scrambled control nor PU1 MO injections caused
682 significant toxicity, nor did the injection significantly affect the number of
683 surviving neurons in the embryos. Reduction of microglia had no significant
684 effect on CPF neurotoxicity. Aminergic neurons were reduced by 22% in

685 the telencephalon with no injection, 21% loss with control MO (scrambled)
686 injection, and 14% loss with PU1 MO injection following CPF treatment
687 (Figure 7C). Similar results were found in the diencephalon (Figure 7D).

688
689 *γ1-Synuclein is necessary for CPF toxicity*
690 Synucleins are neuronal proteins that comprise α-, β-, and γ-
691 synucleins in mammals and α-syn aggregation and accumulation play a
692 central role in PD pathophysiology [34, 44]. ZF do not contain an ortholog of
693 human α-syn, although ZF γ1-synuclein (γ1-syn) has a similar function as α-
694 syn [34, 45]. In order to determine if γ1-syn accumulates in CPF-exposed
695 ZF, we performed Western blot analysis on dissected brain homogenates
696 from 7 dpf larvae and found that γ1-syn protein levels were increased
697 compared to controls (Figure 8A), but mRNA levels were not, (data not
698 shown). We then utilized γ1-syn knockout ZF to determine if the increase
699 in γ1-syn contributed to DA neuron loss. CPF exposure did not result in DA
700 neuron loss in γ1-syn knockout ZF suggesting that γ1-syn was required for
701 CPF neurotoxicity in ZF (Figure 8C).

702
703 *Reduced autophagic flux contributes to CPF neurotoxicity*
704 CPF exposure led to an increase in γ1-syn protein levels but not its
705 mRNA suggesting that the increase was due to decreased degradation. □-
706 Syn is degraded by both the ubiquitin proteasome system (UPS) and
707 autophagy but we focused on autophagy since aggregated □-syn is primarily
708 degraded by this system [34, 46]. We utilized the

709 Tg(*elavl3:eGFP:map1lc3b*) transgenic line to measure autophagic flux in
710 neurons *in vivo* after CPF exposure and found a significant reduction in
711 GFP-positive autophagosome (*Lc3-II*) puncta after treatment with CPF
712 (Figure 8D). We then measured the number of autophagosomes after 1
713 hour of treatment with saturating concentrations of BafA1 and we found
714 that CPF autophagic reduced flux (Figure 8D). A reduction in autophagic
715 activity by CPF exposure was further supported by the finding that the
716 autophagy substrate p62 protein levels were increased while p62
717 expression was unchanged (Figure 8B and Supplemental Figure 9).
718 Furthermore, knocking down LC3 using morpholinos reduced LC3 levels by
719 approximately 60% and resulted in a significant decrease in DA neurons
720 measured by both VMAT-GFP and TH IH (Figure 9A-D). If disruption of
721 autophagy contributed to DA injury, stimulating autophagy should be
722 neuroprotective. We utilized calpeptin to induce autophagic flux (Figure 9E-
723 G and Supplemental Figure 10), and we found that it rescued the neuron
724 loss caused by CPF measured both by counting *vmat2*-GFP neurons and TH-
725 positive neurons (Figure 9E-G). Thus, CPF exposure led to reduced
726 autophagic flux that contributes to DA neuron loss.

727

728 **Discussion**

729 The goal of this study was to determine whether CPF exposure causes
730 an increased risk of developing PD. In our extended community-based case-
731 control study of PD in the central valley of California, we found that long-

732 term exposure to CPF is associated with an up to 174% increased risk of
733 developing PD. We also found both behavioral and pathological features of
734 PD in CPF-exposed mice including motor dysfunction, DA neuron loss,
735 pathological α -syn, and neuroinflammation. Furthermore, we found that the
736 mechanism of CPF neurotoxicity includes decreased autophagic flux and the
737 accumulation of pathological α -syn, both of which were required for CPF-
738 induced DA neuron loss. Taken together, these findings strongly support a
739 causal association between CPF exposure and PD.

740 There are several strengths to this study which include the use of the
741 PEG cohort and geocoded exposure assessment. This exposure assessment
742 is based on the Pesticide Use Report database in California, which provides
743 detailed data on agricultural pesticide use since 1972, and lifelong
744 residential and workplace address histories for all study participants. We
745 estimated cumulative exposure for each study participant based on their
746 home and work proximity to agriculturally applied CPF. Our approach has
747 been well validated and is routinely used for air pollution research [18, 34].
748 A long lag time between exposure and the diagnosis is important since it is
749 believed that the α -syn pathology begins decades prior to the core
750 symptoms of PD become apparent. The association of CPF exposure with
751 PD was stronger for exposures in the 10-20 years prior to the diagnosis and
752 overall strongest with the longest duration window (Table 2). Importantly,
753 exposure assessment did not rely on a subject's recall which is often
754 inaccurate and subject to recall bias. Another strength of the PEG studies is

755 that all PD diagnoses were confirmed by a movement disorders specialist
756 who examined each subject, often multiple times, over several years. One of
757 the difficulties in researching ambient pesticide exposure in agricultural
758 regions is the large number of pesticides applied. CPF application does not
759 occur in isolation. We performed a series of co-exposure adjustments,
760 however, and saw very similar results (Supplemental Table 1). In addition,
761 our findings are consistent with our previous studies [34, 47, 48], and
762 another study that similarly reported increases in risk after CPF exposure
763 [34, 49].

764 We next set out to determine if the association of CPF with increased
765 risk of developing PD is biologically plausible using two different animal
766 models. Previous studies have reported loss of TH and dopamine neurons
767 following oral and intraperitoneal CPF exposure but this is the 1st study that
768 tested the primary means by which humans are exposed, inhalation [12-14,
769 50]. Inhalation of toxicants avoids the portal blood flow system to the liver
770 that occurs with oral ingestion and, therefore, is not metabolized as rapidly.
771 We exposed mice to inhaled CPF and found that it induced behavioral
772 deficits, DA neuron loss, pathological α -syn, and inflammation, all
773 characteristics of PD. Both the CPF-exposed and control mice's' behavioral
774 tests worsened over time presumably due to aging or possibly the stress of
775 the exposures, but the CPF group decreased more. The lesions in the DA
776 pathway were only reduced by 26%, which may explain why we did not see

777 alterations in the open field behavioral test. Mice were exposed for only 11
778 weeks, and longer exposures would likely result in more severe pathology.

779 It is very difficult to determine an exposure concentration that is
780 relevant to human exposures. CPF plasma concentrations of 90 nM were
781 measured in human volunteers [51] and environmental exposure to CPF in
782 US adults and children were estimated to be 1.4–1.61 µg/kg/day [52] so the
783 concentrations used in our studies are only a little higher and therefore
784 relevant to human exposures.

785
786 The solubility of CPF in aqueous solution was a limitation on the
787 concentration we could aerosolize. We therefore dissolved it in 75 % ETOH
788 which alone did not have overt effects to the mice. In preliminary dose
789 finding studies, 3-month-old female mice showed no behavioral effects to
790 CPF concentrations (1.7–1.9 mg/m³/day) which was over 100-fold lower than
791 the LD₅₀ for inhaled CPF previously reported [53]. When we started with
792 6-month-old males, half of them died in less than 24 hrs. at the same level of
793 exposure. The concentration was therefore reduced to 1/3 of this
794 concentration and gradually increased as tolerated until we noted the
795 beginning of weight loss and ended the study. Increased vulnerability in
796 older male mice to CPF exposure is consistent with the gender and age bias
797 seen in humans [6, 53].

798 We also found increased phosphorylated α -syn in DA neurons in the
799 CPF mice relative to controls, which was confirmed by Western blot.
800 Although Sarkosyl insoluble phosphorylated α -syn was increased, Syn 506

801 antibody labeling did not significantly stain the CPF-exposed brains (data
802 not shown). Syn 506 is a monoclonal antibody that recognizes some
803 misfolded fibular α -syn [53, 54]. More time might be necessary for more
804 complex α -syn aggregates to form and/or microglia may have been able to
805 clear them.

806 An important component of establishing biological plausibility is
807 determining the mechanisms by which a toxicant acts. We utilized ZF for
808 this purpose since they are transparent, easily manipulated genetically, and
809 contain a well-developed DA system even in the larval stage. We found that
810 CPF exposure at very low concentrations (250 nM) caused selective toxicity
811 to DA neurons. This toxicity was at least partially due to γ 1-syn since its
812 levels were increased and DA neurons were unaffected when CPF was
813 tested in γ 1-syn knockout fish. The elevated levels were the result of
814 decreased degradation since expression was unchanged. We found that
815 CPF exposure resulted in reduced autophagic flux that contributed to CPF-
816 induced DA neuron loss given that stimulating it was protective against CPF
817 neurotoxicity. This was further confirmed by reducing LC3 expression
818 using MOs which also resulted in loss of DA neurons. It is difficult to study
819 autophagic flux in mice, but we did find that phosphorylated α -syn was
820 increased and the autophagy markers LC3-II and Lamp2a were decreased
821 in the SNpc consistent with the ZF data. Furthermore, there was a trend
822 for higher p62 and lower LC3-II in the supernatant from the CPF-exposed
823 mouse brains consistent with the reduced autophagic flux measured in the

824 ZF. Since many of the alterations we found with CPF exposure were
825 concentrated in the SNpc, it is not surprising that the changes were diluted
826 when testing a whole brain homogenate.

827 Previous studies have reported that CPF causes DA neuron loss in
828 rodents. [12-14, 50], but Singh et al. performed a detailed study of the
829 mechanism of CPF toxicity in cell lines and rats [13]. They described motor
830 deficits and loss of TH protein after oral administration of CPF that was
831 caused apoptotic neuron loss via activation of a mitochondrial-mediated
832 oxidative stress mechanism. They did not describe a clear reduction in
833 autophagy, but they did report increases in LC3 and p62 with CPF
834 exposure. There were several differences in our studies that can explain
835 some of the different results including differences in the models, methods of
836 exposure, and concentrations of CPF. Singh et al used 10 μ M CPF for their
837 mechanistic studies in cell lines since this was the lowest concentration that
838 induced apoptotic cell death while we used an intact vertebrate model (i.e.
839 ZF) using 250 nM CPF for our mechanistic studies so we would not expect
840 to cause mitochondrial toxicity. Singh et al administered CPF to their rats
841 orally which would lead to increased bioactivation by the liver than in our
842 inhalation model. Despite these differences, there were some important
843 similarities in our findings. We found that the autophagic cargo protein p62
844 was increased as did Singh et al. Our results differ in that LC3-II was
845 decreased in both of our models while they found an increase. Lower levels
846 of LC3-II would be expected if autophagosomes were being formed at a

847 reduced rate leading to elevated levels of p62 due to reduced degradation
848 as we found. Higher levels of LC3 could represent an increase in
849 autophosome formation in response to activation of the apoptotic pathway
850 or a reduction in fusion to lysosomes such as occurs with the addition of
851 bafilomycin. We did not find any changes in beclin in whole brain
852 homogenates in contrast to Singh et al. which may reflect that disturbances
853 in autophosome formation occurred downstream of beclin or that changes
854 in a selected neuron population was diluted in the whole brain homogenate.
855 Despite these differences, both studies consistently found that CPF
856 exposure leads to DA neuron loss and alterations in autophagy.

857 Despite the finding that microglia took on an activated morphology in
858 both mice and ZF, microglial activation did not appear to significantly
859 contribute to DA neuron loss in ZF since reducing their development with
860 morpholinos had little effect on CPF neurotoxicity. We attempted to
861 characterize the cytokine profile in mice but unfortunately, we could not
862 determine if the microglia were pro-inflammatory because our methods
863 were not sensitive enough to accurately measure them in mouse brain
864 homogenates except for IL1- α and IL1- β where there were no differences.
865 We did find a trend for an increase in IL1- β in the SNpc which suggest a
866 pro-inflammatory state, but additional studies would be necessary to fully
867 characterize the microglia response. Nevertheless, microglia may
868 contribute to pathology in more chronic exposure models and in aging
869 human brains.

870 There are some weaknesses to the ZF model. They are developing at
871 the time of exposure, whereas PD is a disease of the aged. We do not think
872 this invalidates our results since younger animals generally are more
873 resistant to toxicants relative to older animals, suggesting that we may be
874 underestimating CPF toxicity, not overestimating it. Since the primary
875 purpose of using the ZF was to determine the mechanism of toxicity, we
876 believe this weakness does not alter the validity of our findings.

877

878 **Conclusions**

879 Exposure to CPF, a widely used pesticide, is associated with an
880 increased risk of developing PD in humans. Mice exposed to CPF, in a
881 similar manner to humans, developed motor deficits and pathological
882 characteristics of PD. CPF appears to exert its neurotoxicity by reducing
883 autophagic flux that results in increased α -syn. Taken together, CPF
884 increases the risk of developing PD, and its use and exposure in humans
885 should be restricted. Furthermore, stimulated autophagy might be an
886 important therapeutic target in modifying disease progression.

887

888 **Abbreviations**

889 α -syn α -synuclein

890 CPF chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate)

891 DA dopaminergic

892 Dpf days post fertilization

893 γ 1-syn γ 1-synuclein
894 GFP green fluorescent protein
895 MO morpholino
896 PD Parkinson's disease
897 PEG Parkinson's Environment and Genes
898 pS129 Phosphorylated α -syn at serine 129
899 SNpc substantia nigra pars compacta
900 TH tyrosine hydroxylase
901 VTA ventral tegmental area
902 ZF zebrafish
903

904 **Declarations**

905 University of California, Los Angeles (UCLA) Animal Research
906 Committee approved all experiments using animals in accordance
907 with the US National Institutes of Health guidelines.
908 All procedures for the epidemiology study received approval from the
909 institutional review boards of UCLA, and all participants provided
910 informed consent.
911 All authors have approved this manuscript

912 **Competing interests:** The authors declare that they have no known
913 competing financial interests or personal relationships that could have
914 appeared to influence the work reported in this paper.

915 **Funding:** The Levine Foundation, NIH R01 ES031106, and
916 K01AG07204401

917

918 **References**

919 1. Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT:
920 **LRRK2 and idiopathic Parkinson's disease.** *Trends Neurosci*
921 2022, **45**:224-236.

922 2. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau
923 C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, et al:
924 **Parkinson's Disease-Related Proteins PINK1 and Parkin**
925 **Repress Mitochondrial Antigen Presentation.** *Cell* 2016, **166**:314-
926 327.

927 3. Rocha EM, De Miranda B, Sanders LH: **Alpha-synuclein: Pathology,**
928 **mitochondrial dysfunction and neuroinflammation in**
929 **Parkinson's disease.** *Neurobiol Dis* 2018, **109**:249-257.

930 4. Dorsey ER, Bloem BR: **Parkinson's Disease Is Predominantly an**
931 **Environmental Disease.** *J Parkinsons Dis* 2024, **14**:451-465.

932 5. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M,
933 Marras C, Bhudhikanok GS, Kasten M, Chade AR, et al: **Rotenone,**
934 **paraquat, and Parkinson's disease.** *Environ Health Perspect* 2011,
935 **119**:866-872.

936 6. de Lau LM, Breteler MM: **Epidemiology of Parkinson's disease.**
937 *Lancet Neurol* 2006, **5**:525-535.

938 7. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV,
939 Greenamyre JT: **Chronic systemic pesticide exposure reproduces**
940 **features of Parkinson's disease.** *Nat Neurosci* 2000, **3**:1301-1306.

941 8. Koshlukova SE, Reed NR: **Chlorpyrifos.** In *Encyclopedia of*
942 *Toxicology (Third Edition)*. Edited by Wexler P. Oxford: Academic
943 Press; 2014: 930-934

944 9. Hertz-Pannier I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi
945 B, Lanphear B, Whyatt R: **Organophosphate exposures during**
946 **pregnancy and child neurodevelopment: Recommendations for**
947 **essential policy reforms.** *PLoS Med* 2018, **15**:e1002671.

948 10. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B: **The association**
949 **between ambient exposure to organophosphates and**
950 **Parkinson's disease risk.** *Occup Environ Med* 2014, **71**:275-281.

951 11. Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B:
952 **Paraoxonase 1, agricultural organophosphate exposure, and**
953 **Parkinson disease.** *Epidemiology* 2010, **21**:87-94.

954 12. Sheikh A, Sheikh K: **The expression change of glial fibrillary**
955 **acidic protein and tyrosine hydroxylase in substantia nigra of**
956 **the Wistar rats exposed to chlorpyrifos: a novel environmental**
957 **risk factor for Parkinson's disease.** *Exp Brain Res* 2020, **238**:2041-
958 2051.

959 13. Singh N, Lawana V, Luo J, Phong P, Abdalla A, Palanisamy B, Rokad
960 D, Sarkar S, Jin H, Anantharam V, et al: **Organophosphate pesticide**

961 **chlorpyrifos impairs STAT1 signaling to induce dopaminergic**
962 **neurotoxicity: Implications for mitochondria mediated**
963 **oxidative stress signaling events.** *Neurobiol Dis* 2018, **117**:82-113.

964 14. Ali SJ, Ellur G, Patel K, Sharan K: **Chlorpyrifos Exposure Induces**
965 **Parkinsonian Symptoms and Associated Bone Loss in Adult**
966 **Swiss Albino Mice.** *Neurotox Res* 2019, **36**:700-711.

967 15. Ritz BR, Paul KC, Bronstein JM: **Of Pesticides and Men: a**
968 **California Story of Genes and Environment in Parkinson's**
969 **Disease.** *Curr Environ Health Rep* 2016, **3**:40-52.

970 16. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ: **What features**
971 **improve the accuracy of clinical diagnosis in Parkinson's**
972 **disease: a clinicopathologic study.** *Neurology* 1992, **42**:1142-1146.

973 17. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W,
974 Obeso J, Marek K, Litvan I, Lang AE, et al: **MDS clinical diagnostic**
975 **criteria for Parkinson's disease.** *Mov Disord* 2015, **30**:1591-1601.

976 18. Ritz B, Costello S: **Geographic model and biomarker-derived**
977 **measures of pesticide exposure and Parkinson's disease.** *Ann N*
978 *Y Acad Sci* 2006, **1076**:378-387.

979 19. **California Department of Water Resources Land Use Gallery**
980 [<https://water.ca.gov/programs/water-use-and-efficiency/land-and-water-use/land-use-surveys>,]

982 20. McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb
983 PA: **Geocoding addresses from a large population-based study:**
984 **lessons learned.** *Epidemiology* 2003, **14**:399-407.

985 21. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee
986 VM: **Pathological α -synuclein transmission initiates Parkinson-**
987 **like neurodegeneration in nontransgenic mice.** *Science* 2012,
988 **338**:949-953.

989 22. Santa-Maria I, Diaz-Ruiz C, Ksieczak-Reding H, Chen A, Ho L, Wang J,
990 Pasinetti GM: **GSPE interferes with tau aggregation in vivo:**
991 **implication for treating tauopathy.** *Neurobiol Aging* 2012,
992 **33**:2072-2081.

993 23. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM,
994 Pike CJ: **Progesterone and estrogen regulate Alzheimer-like**
995 **neuropathology in female 3xTg-AD mice.** *J Neurosci* 2007,
996 **27**:13357-13365.

997 24. Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW: **Using**
998 **DeepLabCut for 3D markerless pose estimation across species**
999 **and behaviors.** *Nat Protoc* 2019, **14**:2152-2176.

1000 25. Duda JE, Giasson BI, Gur TL, Montine TJ, Robertson D, Biaggioni I,
1001 Hurtig HI, Stern MB, Gollomp SM, Grossman M, et al:
1002 **Immunohistochemical and Biochemical Studies Demonstrate a**
1003 **Distinct Profile of α -Synuclein Permutations in Multiple System**

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

Atrophy. *Journal of Neuropathology & Experimental Neurology* 2000, **59**:830-841.

26. Henderson MX, Chung CH, Riddle DM, Zhang B, Gathagan RJ, Seeholzer SH, Trojanowski JQ, Lee VMY: **Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies.** *J Neurosci* 2017, **37**:5870-5884.

27. Wen L, Wei W, Gu W, Huang P, Ren X, Zhang Z, Zhu Z, Lin S, Zhang B: **Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish.** *Dev Biol* 2008, **314**:84-92.

28. Sagasti A, Guido MR, Raible DW, Schier AF: **Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors.** *Curr Biol* 2005, **15**:804-814.

29. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ: **mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.** *Blood* 2011, **117**:e49-56.

30. Khuansuwan S, Barnhill LM, Cheng S, Bronstein JM: **A novel transgenic zebrafish line allows for in vivo quantification of autophagic activity in neurons.** *Autophagy* 2019, **15**:1322-1332.

31. Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT, Burton EA: **Hypokinesia and reduced dopamine levels in zebrafish lacking beta- and gamma1-synucleins.** *J Biol Chem* 2012, **287**:2971-2983.

1027 32. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh
1028 JR: **Targeted gene disruption in somatic zebrafish cells using**
1029 **engineered TALENs.** *Nat Biotechnol* 2011, **29**:697-698.

1030 33. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D:
1031 **ZiFiT (Zinc Finger Targeter): an updated zinc finger**
1032 **engineering tool.** *Nucleic acids research* 2010, **38**:W462-468.

1033 34. Ha SM, Barnhill LM, Li S, Bronstein JM: **Neurotoxicity of diesel**
1034 **exhaust extracts in zebrafish and its implications for**
1035 **neurodegenerative disease.** *Sci Rep* 2022, **12**:19371.

1036 35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M,
1037 Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al: **Fiji: an**
1038 **open-source platform for biological-image analysis.** *Nat Methods*
1039 2012, **9**:676-682.

1040 36. Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O'Donnell K, Stahl
1041 MC, Yamashiro C, Klarner FG, Schrader T, et al: **Neurotoxicity of**
1042 **the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-**
1043 **Dependent in Zebrafish Embryos.** *Environ Health Perspect* 2016,
1044 **124**:1766-1775.

1045 37. Paul KC, Cockburn M, Gong Y, Bronstein J, Ritz B: **Agricultural**
1046 **paraquat dichloride use and Parkinson's disease in California's**
1047 **Central Valley.** *Int J Epidemiol* 2024, **53**.

1048 38. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers
1049 **V: Inflammation and immune dysfunction in Parkinson disease.**
1050 *Nat Rev Immunol* 2022, **22**:657-673.

1051 39. Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P,
1052 Zhang J, et al: **Paraquat exposure induces Parkinsonism by**
1053 **altering lipid profile and evoking neuroinflammation in the**
1054 **midbrain.** *Environ Int* 2022, **169**:107512.

1055 40. Van Laar AD, Webb KR, Keeney MT, Van Laar VS, Zharikov A, Burton
1056 EA, Hastings TG, Glajch KE, Hirst WD, Greenamyre JT, Rocha EM:
1057 **Transient exposure to rotenone causes degeneration and**
1058 **progressive parkinsonian motor deficits, neuroinflammation,**
1059 **and synucleinopathy.** *NPJ Parkinsons Dis* 2023, **9**:121.

1060 41. Fernández-Arjona MDM, Grondona JM, Granados-Durán P,
1061 Fernández-Llebrez P, López-Ávalos MD: **Microglia Morphological**
1062 **Categorization in a Rat Model of Neuroinflammation by**
1063 **Hierarchical Cluster and Principal Components Analysis.** *Front*
1064 *Cell Neurosci* 2017, **11**:235.

1065 42. Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O'Donnell
1066 KC, Barnhill L, Casida JE, Cockburn M, Sagasti A, et al: **Aldehyde**
1067 **dehydrogenase inhibition as a pathogenic mechanism in**
1068 **Parkinson disease.** *Proc Natl Acad Sci U S A* 2013, **110**:636-641.

1069 43. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P,
1070 Maxfield FR: **Activation of microglia acidifies lysosomes and**

1071 **leads to degradation of Alzheimer amyloid fibrils.** *Mol Biol Cell*
1072 2007, **18**:1490-1496.

1073 44. Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G,
1074 Ghiglieri V: **Alpha-synuclein in Parkinson's disease and other**
1075 **synucleinopathies: from overt neurodegeneration back to early**
1076 **synaptic dysfunction.** *Cell Death Dis* 2023, **14**:176.

1077 45. Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT,
1078 Burton EA: **Hypokinesia and reduced dopamine levels in**
1079 **zebrafish lacking β - and γ 1-synucleins.** *J Biol Chem* 2012,
1080 **287**:2971-2983.

1081 46. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: **α -**
1082 **Synuclein Is Degraded by Both Autophagy and the**
1083 **Proteasome***.

1084 *Journal of Biological Chemistry* 2003, **278**:25009-
1085 25013.

1086 47. Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, Ritz
1087 B: **Household organophosphorus pesticide use and Parkinson's**
1088 **disease.** *Int J Epidemiol* 2013, **42**:1476-1485.

1089 48. Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B: **Functional**
1090 **paraoxonase 1 variants modify the risk of Parkinson's disease**
1091 **due to organophosphate exposure.** *Environ Int* 2013, **56**:42-47.

1092 49. Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone
1093 JT, Shepherd S: **Pesticide/environmental exposures and**
1094 **Parkinson's disease in East Texas.** *J Agromedicine* 2008, **13**:37-48.

1094 50. Zhang J, Dai H, Deng Y, Tian J, Zhang C, Hu Z, Bing G, Zhao L:

1095 **Neonatal chlorpyrifos exposure induces loss of dopaminergic**

1096 **neurons in young adult rats.** *Toxicology* 2015, **336**:17-25.

1097 51. Nolan RJ, Rick DL, Freshour NL, Saunders JH: **Chlorpyrifos:**

1098 **pharmacokinetics in human volunteers.** *Toxicol Appl Pharmacol*

1099 1984, **73**:8-15.

1100 52. Rigas ML, Okino MS, Quackenboss JJ: **Use of a pharmacokinetic**

1101 **model to assess chlorpyrifos exposure and dose in children,**

1102 **based on urinary biomarker measurements.** *Toxicol Sci* 2001,

1103 **61**:374-381.

1104 53. Berteau PE, Deen WA: **A comparison of oral and inhalation**

1105 **toxicities of four insecticides to mice and rats.** *Bull Environ*

1106 *Contam Toxicol* 1978, **19**:113-120.

1107 54. Waxman EA, Duda JE, Giasson BI: **Characterization of antibodies**

1108 **that selectively detect alpha-synuclein in pathological**

1109 **inclusions.** *Acta Neuropathol* 2008, **116**:37-46.

1110

1111 **Figure Legends**

1112 **Figure 1. CPF exposure is associated with an increased risk of PD. (A)**

1113 Demographic characteristics of PD patients and non-PD participants (B) Scatter

1114 plot of pounds active ingredient applied per acre for each participant each year

1115 within 500 m of residential address and workplace address. (C) Smoothed trend

1116 line from loess local regression based on data shown in plots. Lb, pounds; LOESS,

1117 locally estimated scatterplot smoothing. (D) CPF risk estimated with logistic
1118 regression as ORs (95% CI) according to the type of exposure assessments.

1119

1120 **Figure 2. CPF exposure parameters and behavior assays on C57BL/6J**

1121 **mice.** (A) Mice's body weight was recorded before and during CPF exposure. (B)
1122 CPF concentrations in the exposure chamber over time. (C) CPF standard curve
1123 and mouse brain concentrations (arrows). (D) Open field performance. From left to
1124 right: Representative trajectories of individual control (CTRL) and CPF mice,
1125 values of total distance traveled, mean velocity, and center time movement. (E)
1126 Accelerating Rotarod performance and Wire hang test (F) latency to fall of control
1127 and CPF-exposed mice. Statistical significances represented with asterisks: ** =
1128 $p < 0.01$, and ns = not significant. P-values were calculated using two-way ANOVA
1129 with the Bonferroni correction (see Supplemental Figure 2 for full statistical
1130 analysis).

1131

1132 **Figure 3. Effects of CPF inhalation on mouse brain pathology.** (A)
1133 Immunofluorescence (IF) staining and histogram of the number of TH-positive cells
1134 in the SNpc and ventral tegmental area (VTA) of the mouse brain. Scale = 250 μ m.
1135 CTRL: n=5; CPF: n=5. (B) Representative IF images of TH-stained striatum.
1136 Scale = 2000 μ m. $p = 0.06$, Student's t-test. (C) α -Syn at pS129 in insoluble
1137 fractions was detected by Western blot. (D, E) Representative SNpc and VTA
1138 images of pS129 α -syn positive aggregates in CPF-exposed mice. Scale = 20 μ m. (F,
1139 G) Representative SNpc and VTA images with the histogram of ubiquitin staining.
1140 Scale = 20 μ m. Statistical significances represented with asterisks: * = $p < 0.05$,
1141 **** = $p < 0.0001$, and ns = not significant. P-values were calculated using the two-

1142 tailed Student's t-test. CTRL: n = 5; CPF: n = 5.

1143

1144 **Figure 4. LC3 and Lamp2A immunohistochemistry in the SNpc and VTA of**
1145 **CPF-exposed mice.** (A-B) Representative IF imaging of Lc3 (green) and TH (red)
1146 in the SNpc and VTA. Histogram bars indicated the mean fluorescence intensity
1147 (MFI) of Lc3 (green) in TH (red) positive DA neurons of C57BL/6J mice brain
1148 exposed to CPF. Scale = 20 μ m. CTRL: n=5; CPF: n=5. (C, D) Similarly, IF images
1149 of SNpc and VTA sections stained with lysosome marker Lamp2a (magenta) and
1150 TH (red) in the SNpc and VTA. Histograms showed the lysosomal MFI in the brains
1151 of CPF-exposed and CTRL mice. Scale = 20 μ m. CTRL: n=5; CPF: n=5. Statistical
1152 significances are represented by standard error of mean (SEM) with asterisks:
1153 **p < 0.01, and ****p < 0.0001. P-values were calculated using the two-tailed
1154 Student's t-test.

1155

1156 **Figure 5. CPF-exposure causes microglia activation.** (A-C) Representative
1157 confocal images of Iba1(magenta) staining used for microglia analyses at the
1158 SNpc, VTA, and SNpr. Images were converted to binary with randomly selected
1159 microglia. The histogram represented the microglial size (area and perimeter) and
1160 roundness. Scale bar = 5 μ m. P-values were calculated using the two-tailed
1161 Student's t-test. Statistical significance is represented by standard error of mean
1162 (SEM) with asterisks: ****p < 0.0001, and ns=not significant. CTRL: n=5; CPF:
1163 n=5. (D) Representative IF images of the proinflammatory cytokine IL-1 β (green),
1164 Iba1(magenta) and TH (red) in CPF-exposed mice compared to the CTRL mice. The
1165 histogram showed the MFI of IL-1 β in the SNpc. P=0.1. Scale = 20 μ m. CTRL: n=5;
1166 CPF: n=5. P-values were calculated using the two-tailed Student's t-test.

1167 **Figure 6. CPF induces selective loss of DA neurons in ZF embryos. (A-C)**

1168 CPF exposure in Tg (*vmat2*:GFP) ZF larvae, and the counts of *vmat2*:GFP positive
1169 aminergic neurons and TH (red) positive DA neurons in the telencephalon (Tc),
1170 dorsal diencephalon (Dc) and ventral Dc, respectively. (D) CPF exposure in Tg
1171 (*is1*:GFP) positive Rohon-Beard neurons (lateral view). Scale bar = 50 μ m.
1172 Statistical analysis performed by a two-tailed Student t-test. Statistical
1173 significances represented with asterisks: *** = $p < 0.001$, **** = $p < 0.0001$, ns =
1174 not significant.

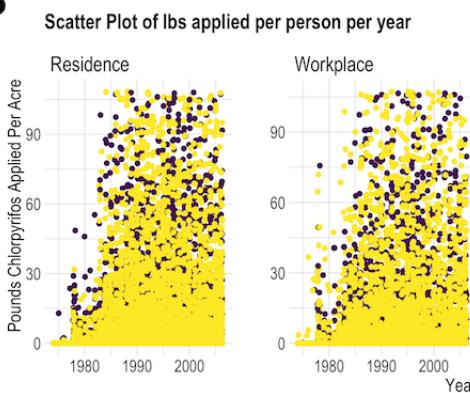
1175

1176 **Figure 7. CPF neurotoxicity is not dependent on microglia in ZF. (A)**

1177 Tg(*mpeg1*:*mCherry*) ZF embryos were treated with 250 nM CPF at 24 hpf for 6
1178 days. Histograms indicated the number of microglia, microglial maximum branch
1179 length, number of branches and number of junctions in ZF larvae at 7 dpf. Scale
1180 bars: 75 μ m. (dorsal view). (B) CPF-exposed Tg(*mpeg1*:*mCherry*) ZF larvae with
1181 lysotracker green staining. Histograms showed the lysotracker green MFI in the
1182 microglia (red). Scale bars: 25 μ m, and 5 μ m (Enlarged). Statistical analysis was
1183 performed using a two-tailed Student t-test. (C, D) Injection of PU1 morpholino
1184 oligonucleotide (MO) in Tg(*mpeg1*:*mCherry*) ZF embryos. The bar diagrams
1185 displayed comparisons between scramble (Scr) MO and PU1 MO with and without
1186 CPF. Scale bar = 50 μ m. Statistical analysis was performed using two-way ANOVA
1187 with the Bonferroni correction. Statistical significances represented with asterisks:
1188 * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$, ns = not
1189 significant.

1190

1191 **Figure 8. CPF reduces autophagic flux and neurotoxicity is dependent on**
1192 **ZF synuclein.** (A-B) CPF treatment in ZF larvae and the detection of fish
1193 endogenous γ 1-syn and p62 protein levels by western blot. (C) Representative Th
1194 (white) immunostaining in *sncy1* knockout ZF larvae at 7 dpf. Scale bar = 50 μ m.
1195 (D) The number of *Lc3II*-GFP positive puncta in the midbrain was counted in 5 dpf
1196 larvae with and without Bafilomycin A1 (BafA1). Statistical analysis was performed
1197 using two-way ANOVA with Bonferroni correction. Scale bar = 50 μ m, and 5 μ m
1198 (Enlarged). Statistical significances represented with asterisks: * = p < 0.05, ****
1199 = p < 0.0001, ns = not significant.


1200

1201 **Figure 9. Reduced autophagic flux leads to DA neuron loss.** (A) *Lc3* protein
1202 level at 5 dpf was reduced after MO knockdown ZF larvae. (B-D) Representative IF
1203 images of Tg (*vmat2*:GFP) larvae after *Lc3* MO knockdown and the count of DA
1204 neurons in ZF's Tc and Dc regions. Scale bar = 50 μ m. Statistical analysis was
1205 performed using a two-tailed Student t-test, and statistical significances are
1206 represented with asterisks: ** = p < 0.01. (E-G). Representative IF imaging with
1207 and without calpeptin treatment revealed the number of *vmat2*-GFP-positive
1208 ammergic neurons and Th-positive dopaminergic neurons following CPF exposure.
1209 Scale bar = 50 μ m. Statistical analysis showed the quantification of *vmat2*-GFP and
1210 Th-positive cells using ANOVA test with Bonferroni correction. Statistical
1211 significance represented with asterisks: * = p < 0.05, ns = not significant.

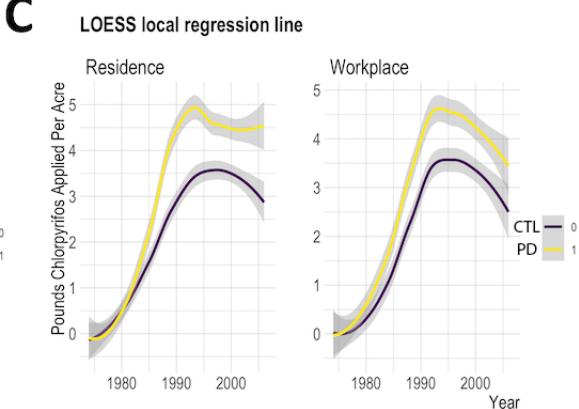
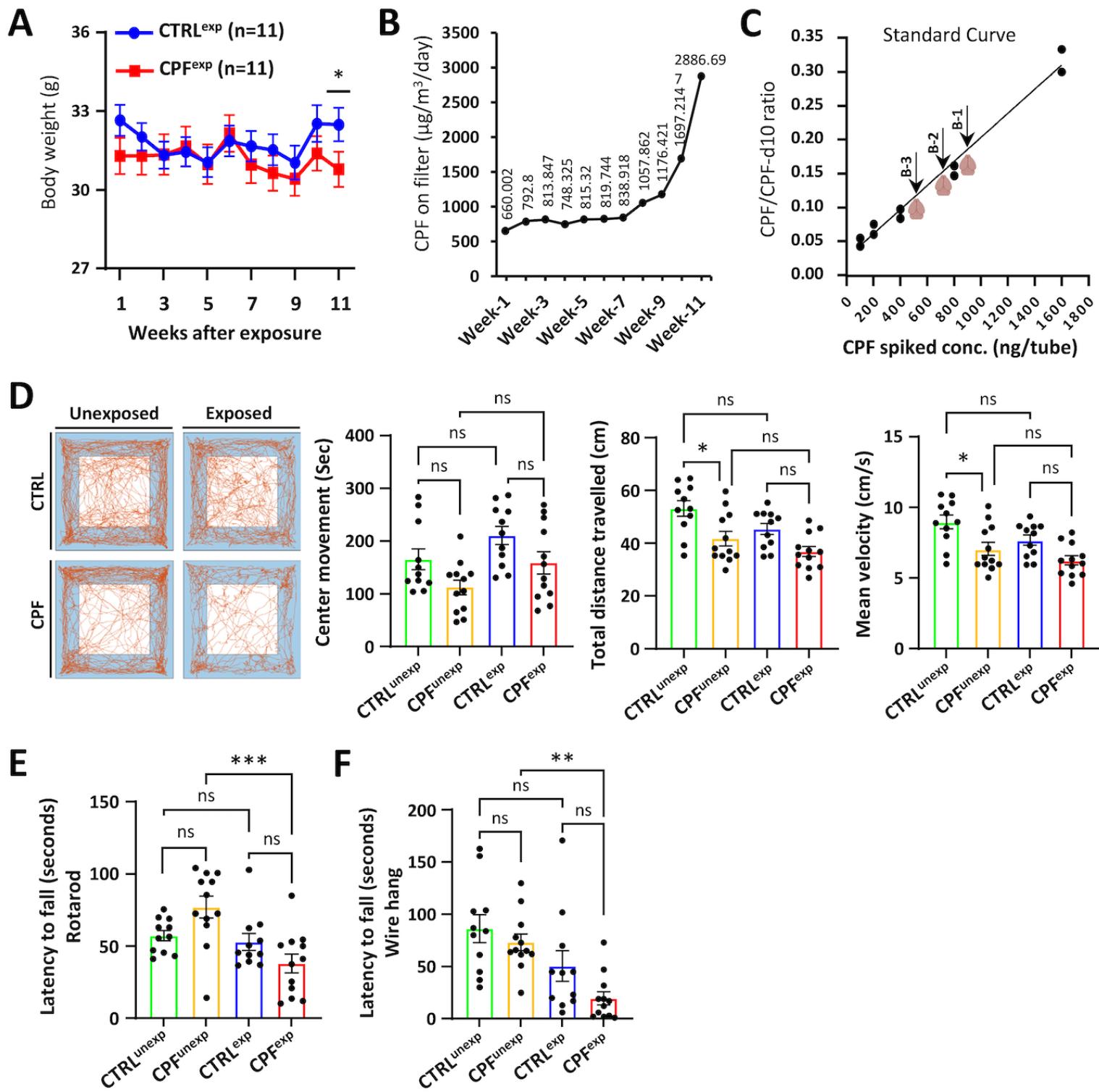

A

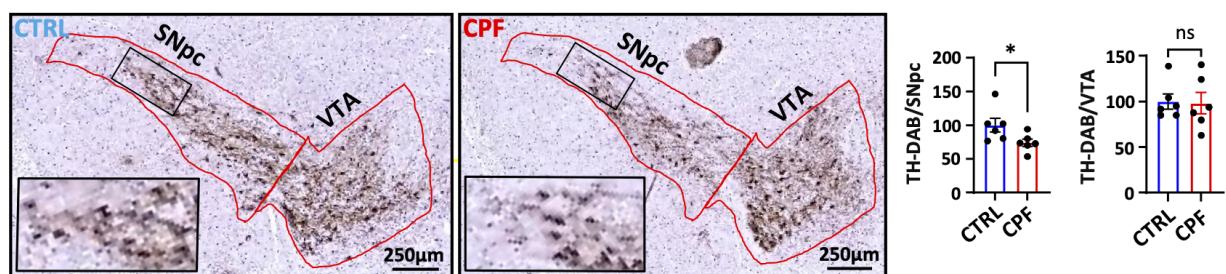
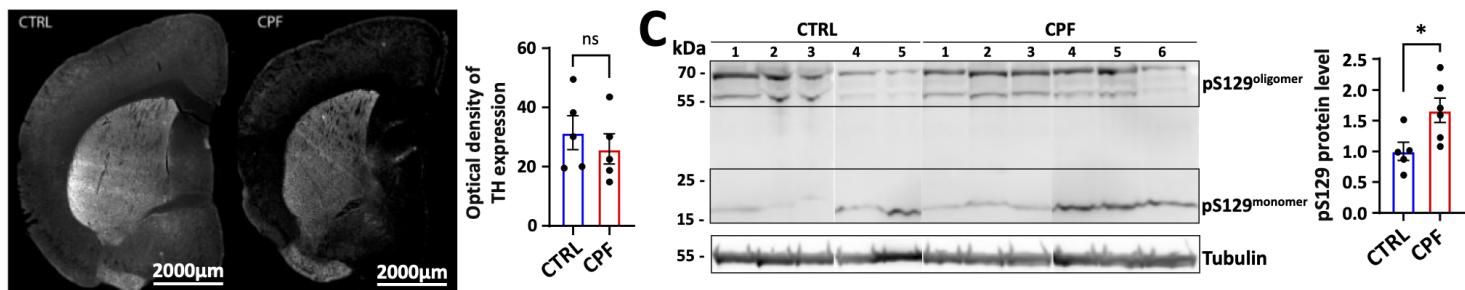
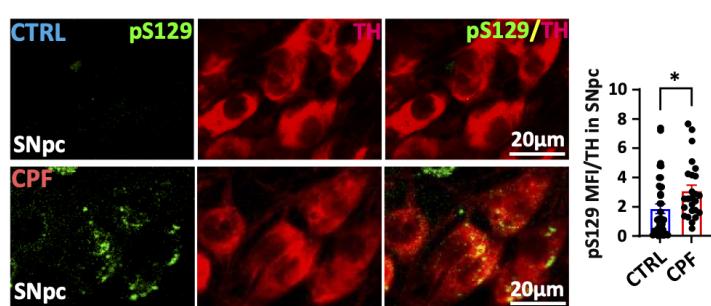
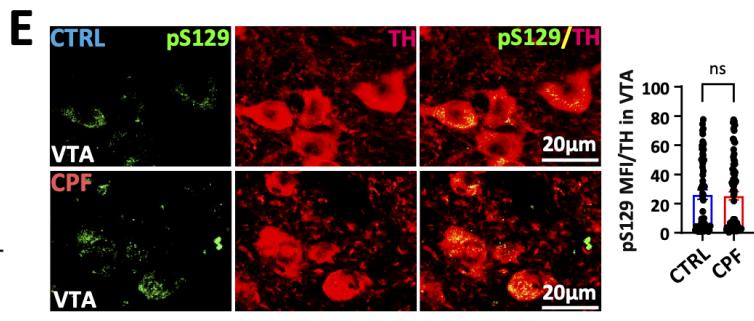
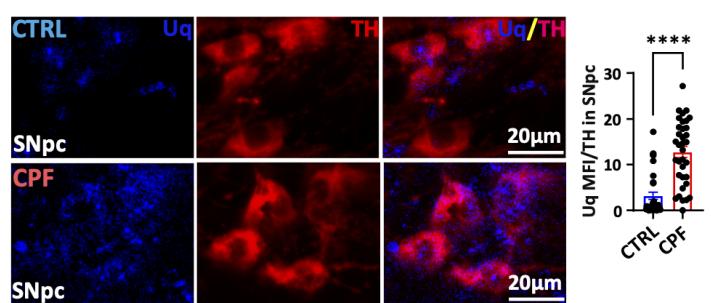
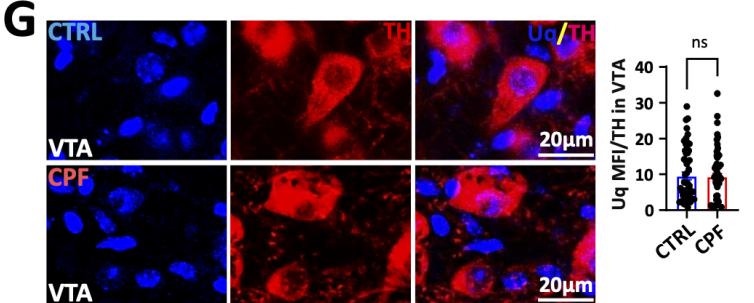
Table 1. Study population characteristics		
Variable: Mean (SD) or n (%)	Controls (n=824)	PD patients (n=829)
Age	65.9 (11.6)	67.7 (10.6)
Male Sex	383 (46.5)	524 (63.2)
Years of Education	14 (4.0)	14 (4.6)
European Ancestry	569 (69.2)	634 (76.5)
Non-European Ancestry	253 (30.8)	195 (23.5)
White	569 (69.0)	631 (76.5)
Latino	155 (18.8)	137 (16.6)
Asian	26 (3.2)	22 (2.7)
Other	74 (9.0)	39 (4.7)
Never Smoker	397 (48.2)	449 (54.4)
Former Smoker	331 (40.2)	345 (41.8)
Current Smoker	96 (11.7)	31 (3.8)

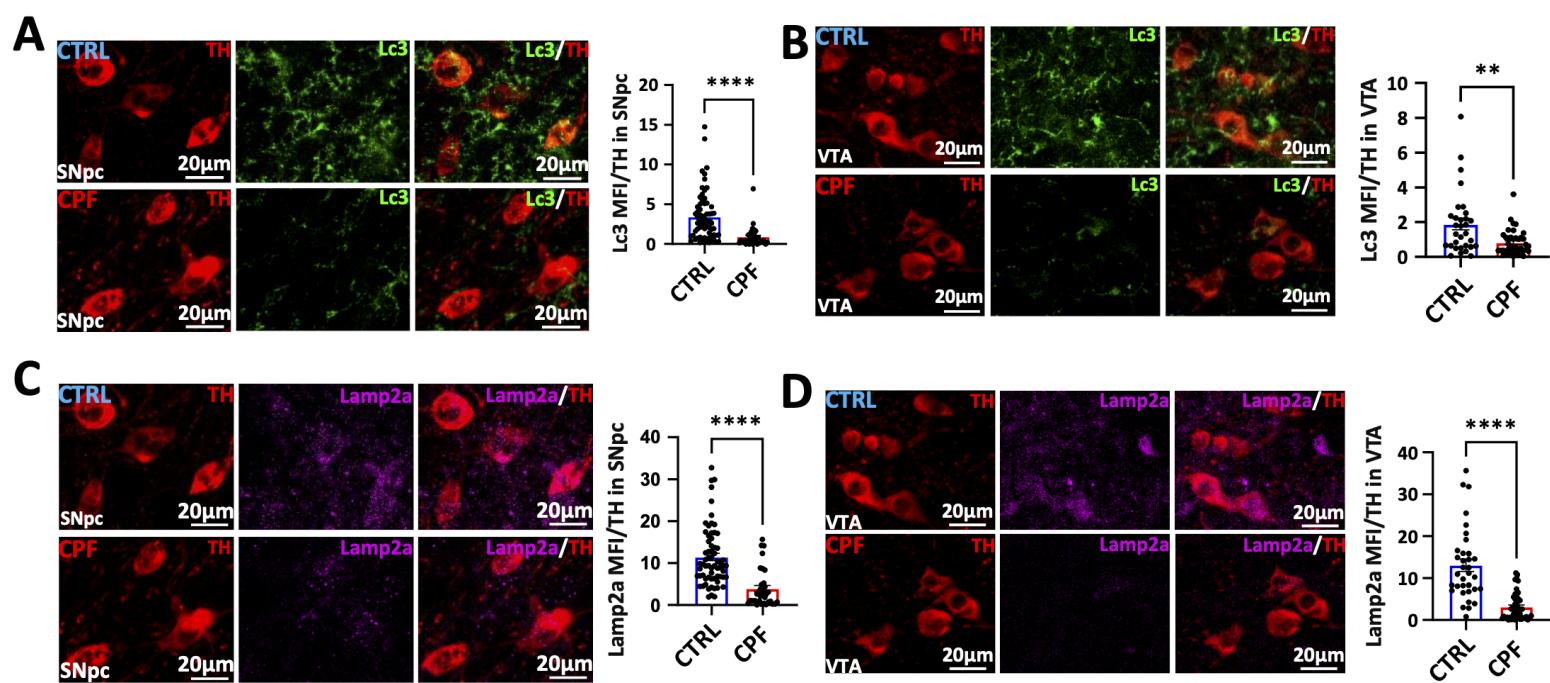
B

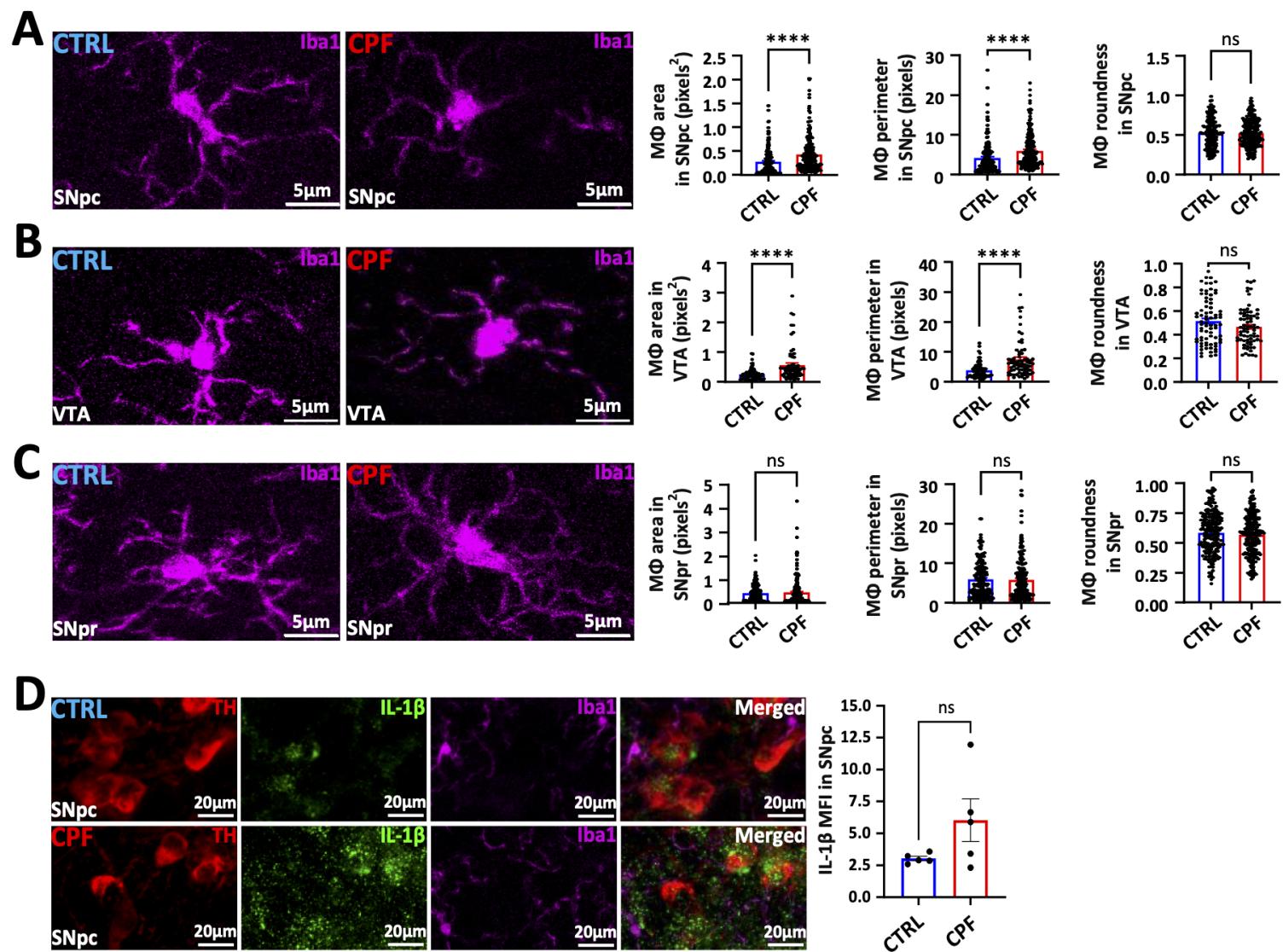
C

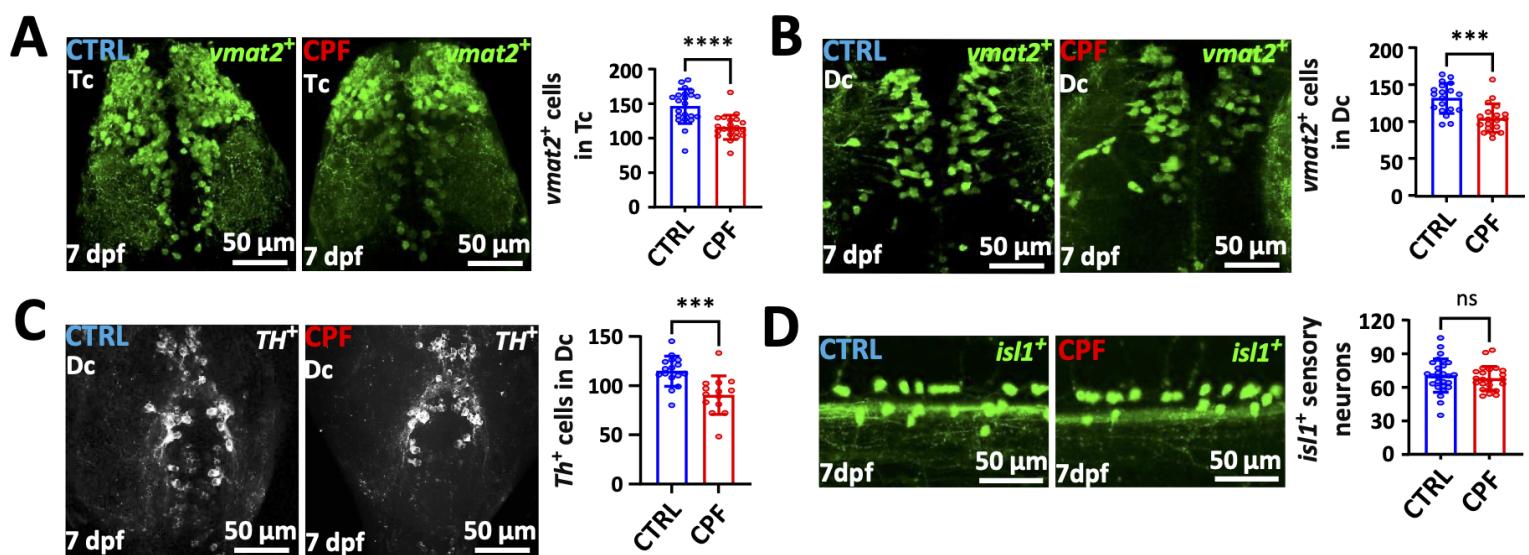
D

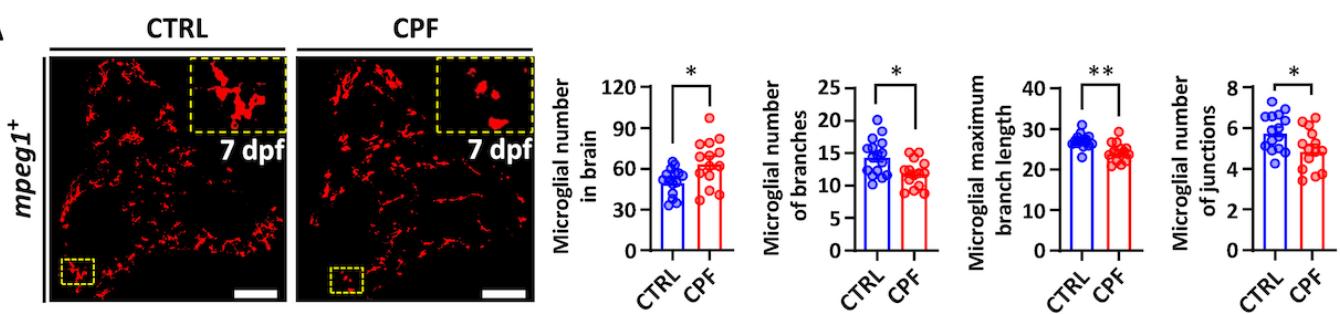
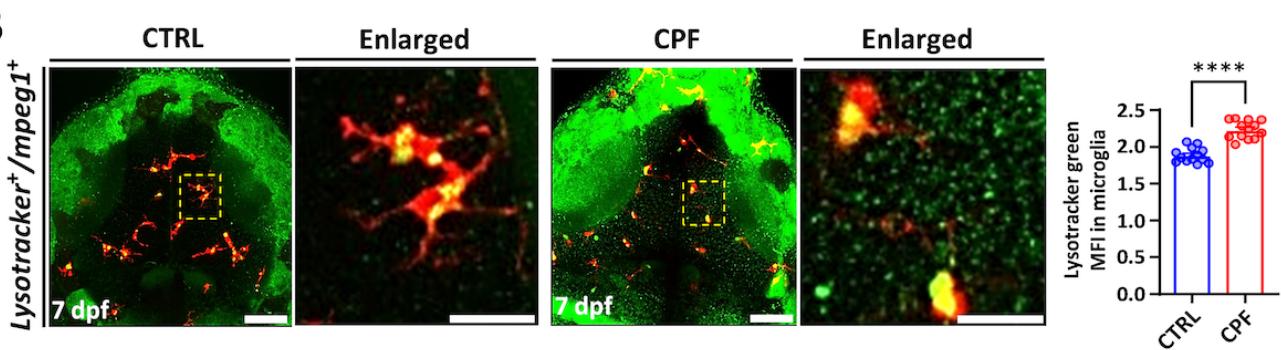
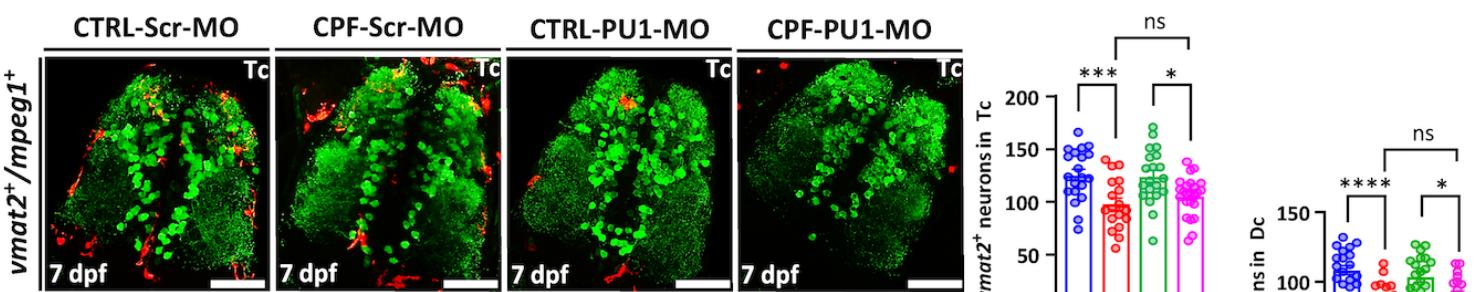
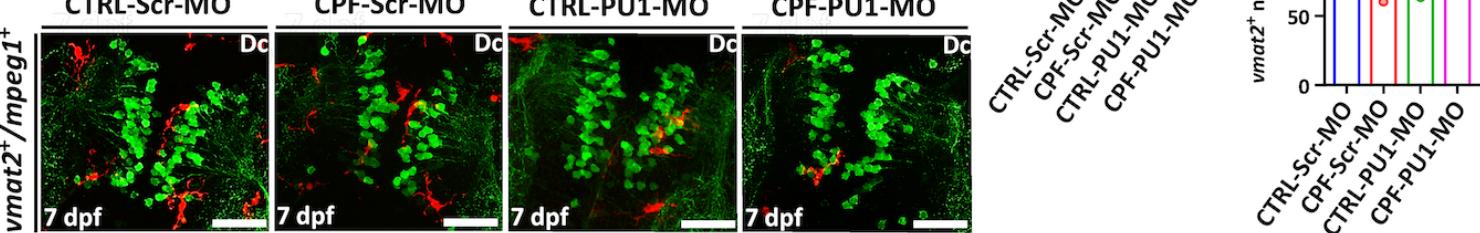

Table 2. Chlorpyrifos risk estimated with logistic regression as ORs (95% CI) according to type of exposure assessments

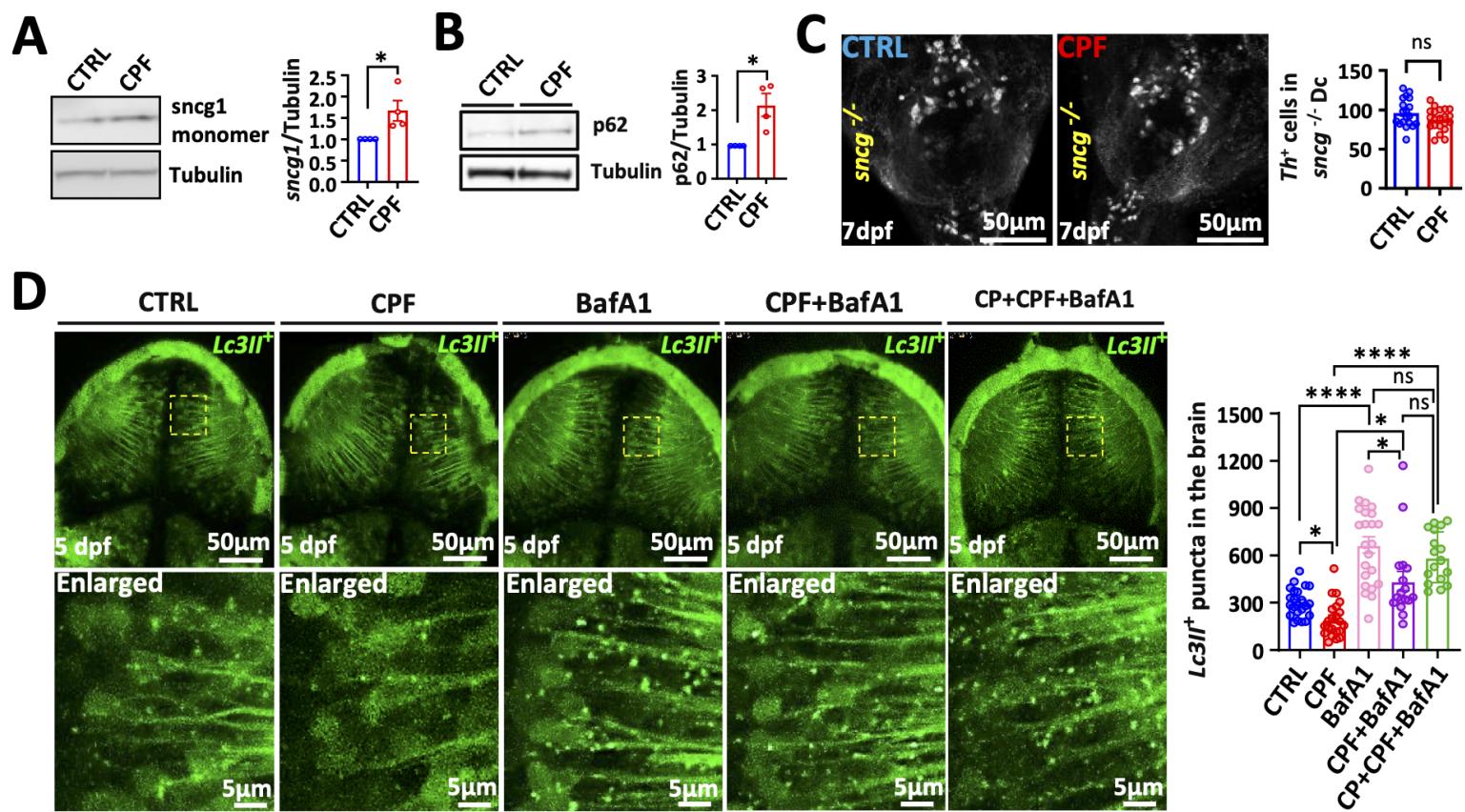






Exposure Assessment and Time Window	PD patients (n=824)	Controls (n=821)	OR (95% CI)	p-value	PD patients (n=800)	Controls (n=782)	OR (95% CI)	p-value
Application Near:								
Residence								
Any application, yes								
1974-index year	499 (60.6)	452 (55.1)	1.35 (1.09, 1.68)	5.35E-03	415 (51.9)	347 (44.4)	1.39 (1.12, 1.73)	2.93E-03
20y - 10y prior to index year	394 (48.1)	336 (41.1)	1.47 (1.19, 1.82)	3.97E-04	321 (42.1)	248 (34.9)	1.39 (1.10, 1.74)	5.10E-03
10y prior to index year	382 (46.6)	337 (41.2)	1.26 (1.02, 1.55)	0.03	243 (36.3)	204 (34.4)	1.15 (0.89, 1.48)	0.28
Application > Median in exposed controls, yes								
1974-index year	267 (32.4)	226 (27.5)	1.35 (1.08, 1.70)	0.009474	224 (28.0)	173 (22.2)	1.39 (109, 1.79)	8.76E-03
20y - 10y prior to index year	218 (26.6)	168 (20.5)	1.58 (1.23, 2.03)	3.29E-04	164 (21.5)	124 (17.4)	1.34 (1.01, 1.78)	0.04
10y prior to index year	202 (24.6)	168 (20.5)	1.28 (1.00, 1.65)	0.05	140 (20.9)	102 (17.2)	1.28 (0.94, 1.75)	0.11
Duration of exposure, per one (equivalent to living near Chlorpyrifos application within buffer every year in window)								
1974-index year	0.17 (0.21)	0.14 (0.19)	2.68 (1.58, 4.55)	2.63E-04	0.14 (0.20)	0.11 (0.18)	2.74 (1.55, 4.89)	5.94E-04
20y - 10y prior to index year	0.22 (0.31)	0.18 (0.29)	1.99 (1.40, 2.85)	1.54E-04	0.19 (0.29)	0.16 (0.28)	1.61 (1.10, 2.38)	0.02
10y prior to index year	0.25 (0.34)	0.20 (0.32)	1.50 (1.09, 2.07)	0.01	0.21 (0.34)	0.18 (0.32)	1.33 (0.92, 1.91)	0.13
Average exposure, per 10 pounds Chlorpyrifos active ingredient applied per acre per year within buffer*								
1974-index year	3.0 (5.9)	2.2 (4.7)	1.39 (1.13, 1.71)	1.74E-03	2.6 (6.0)	1.9 (4.7)	1.35 (1.10, 1.67)	4.99E-03
20y - 10y prior to index year	4.1 (9.9)	3.1 (8.1)	1.19 (1.05, 1.34)	5.77E-03	3.7 (9.8)	3.0 (8.3)	1.10 (0.98, 1.25)	0.12
10y prior to index year	5.0 (12.2)	3.6 (9.2)	1.12 (1.01, 1.24)	0.03	4.8 (12.2)	3.4 (9.3)	1.15 (1.02, 1.29)	0.02
Average exposure, log-transformed, per one**								
1974-index year	0.7 (1.0)	0.6 (0.9)	1.22 (1.09, 1.36)	5.71E-04	0.6 (1.0)	0.5 (0.9)	1.22 (1.08, 1.37)	1.15E-03
20y - 10y prior to index year	0.7 (1.1)	0.6 (1.0)	1.20 (1.09, 1.32)	3.13E-04	0.7 (1.1)	0.5 (1.0)	1.13 (1.02, 1.26)	0.02
10y prior to index year	0.8 (1.2)	0.6 (1.1)	1.12 (1.02, 1.23)	0.02	0.7 (1.2)	0.6 (0.6)	1.12 (1.01, 1.24)	0.04

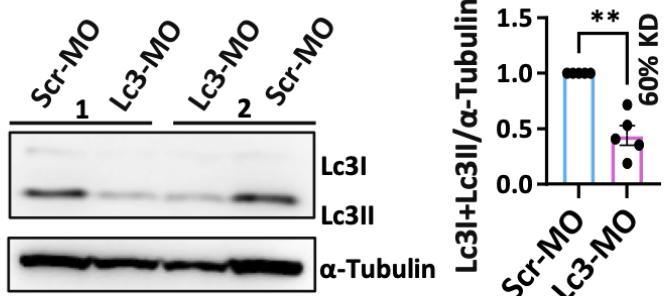

Models control for age, race/ethnicity, sex, index year, and study wave

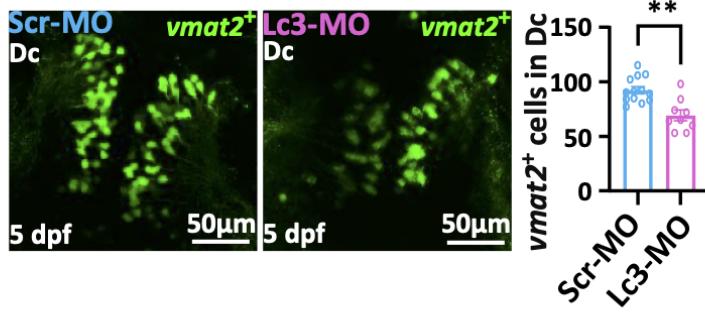
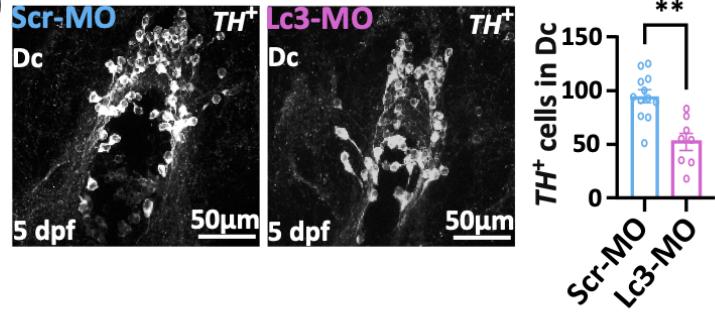
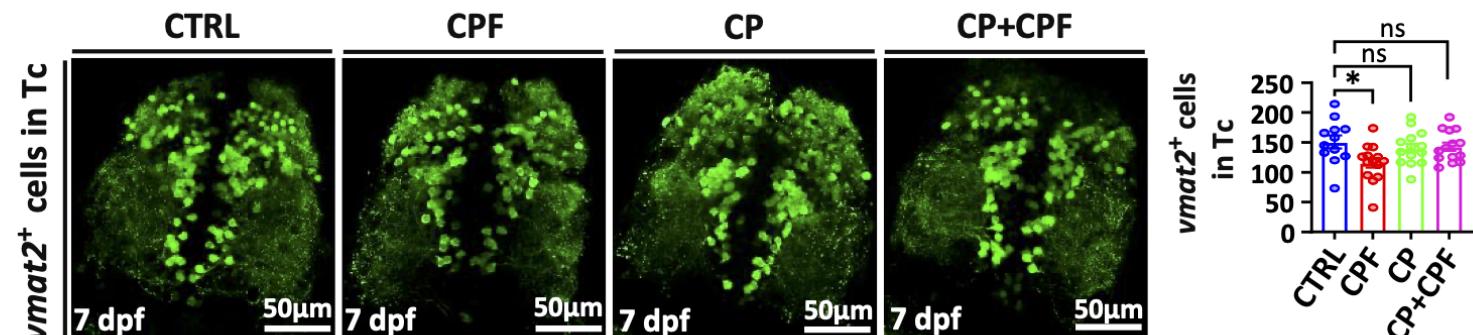
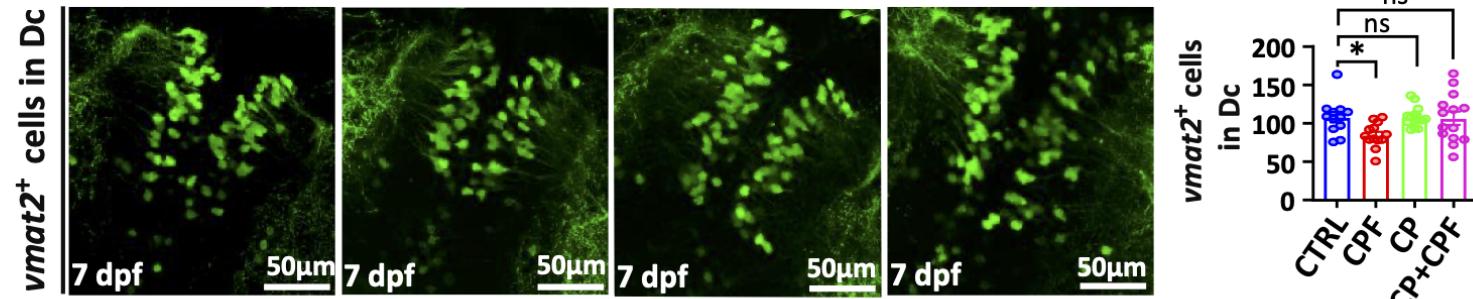
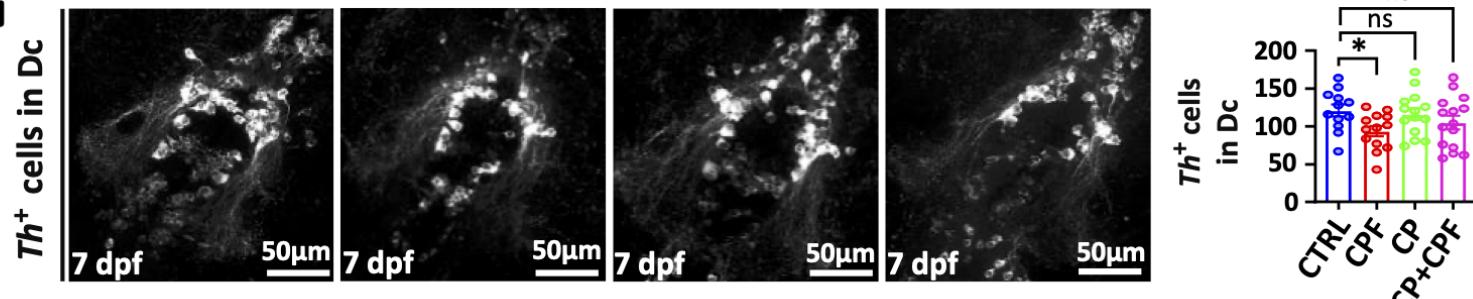

*After removing the top 1% of exposure as potential outliers, the pounds of Chlorpyrifos applied per acre in any given year ranged from 0 to 108.44


**Average exposure (year average Chlorpyrifos applied per acre exposure assessment) was offset by 1 and log transformed. Values ranged from 0-4.1


A**B****D****E****F****G**



A**B****C****D**

A**B****C****D****E****F****G**